首页|城镇污水处理厂数字工艺员系统开发及应用

城镇污水处理厂数字工艺员系统开发及应用

扫码查看
在中国经济社会发展的绿色化、低碳化转型背景下,污水处理作为污染防治和温室气体减排的关键领域,面临着提升处理效率和降低碳排放的双重挑战,文章旨在采用统计学、流体力学理论、机器学习等多种技术建立基于生产数据驱动的智慧化数字工艺员系统。以某污水处理厂为研究对象,采用XGBOOST机器学习算法建立综合考虑上游泵站、区域温度、天气等因素的污水厂水量预测模型;基于污水厂工艺运行原理及历史运行数据,采用机器学习、流体力学理论等多种技术,建立了基于"机理"+"数理"融合的污水处理厂各工艺段参数预测模型,并开发了包含生产现场层、控制层和决策层3层架构的污水处理厂数字工艺员系统,在该污水处理厂进行了应用。研究结果表明:该数字工艺员系统实现了污水处理厂智能排产、工艺参数预测等智慧决策功能,与上一年同期未使用该系统相比,在TN、氨氮和TP去除率增加的基础上,平均电单耗和药单耗分别下降了 4。98%和4。11%,达到减污降碳、协同增效的目的,提升了污水处理厂数字化、绿色化和智慧化水平。
Development and Application of Digital Process Operator System in Urban WWTPs
In the context of China's economic and social development transitioning towards greening and low-carbon transformation,wastewater treatment emerges as a critical domain for pollution prevention and greenhouse gas reduction,facing dual challenges of enhancing treatment efficiency and reducing carbon emissions.This study aimed to establish an intelligent digital process operator system driven by production data,employing a variety of technologies including statistics,fluid dynamics theory,and machine learning.Focusing on a specific wastewater treatment plant(WWTP),this research utilized the XGBOOST machine learning algorithm to develop a comprehensive sewage volume prediction model that takes into account factors such as upstream pump stations,regional temperature,and weather conditions.Based on the operational principles and historical data of the wastewater treatment plant,process parameter prediction models for various process segments were developed by integrating"mechanistic"and"mathematical"approaches using machine learning and fluid dynamics theories.A digital process operator system for the wastewater treatment plant,comprising three-tier architecture of production site layer,control layer,and decision layer,was constructed and applied in the WWTP.The research findings demonstrate that the digital process operator system enables intelligent scheduling,process parameter prediction,and other intelligent decision-making functions for the wastewater treatment plant.Compared to the same period of the previous year without the system,the removal rates of total nitrogen(TN),ammonia nitrogen,and total phosphorus(TP)have increased,with an average decrease of 4.98%in electricity consumption and 4.11%in chemical usage,achieving the goal of pollution and carbon reduction,while enhancing the digitalization,greening,and intelligent level of the WWTP.

digital process operatormachine learningintelligent schedulingprocess parameter predictionpollution and carbon reduction

王丽花、陈会娟、朱明瑞

展开 >

上海城投污水处理有限公司,上海 201203

上海西派埃智能化系统有限公司,上海 200233

数字工艺员 机器学习 智能排产 工艺参数预测 减污降碳

2024

净水技术
上海市净水技术学会,上海市城乡建设和交通委员会科学技术委员会办公室

净水技术

CSTPCD
影响因子:0.643
ISSN:1009-0177
年,卷(期):2024.43(9)