首页|基于Elman神经网络模型的二次供水系统余氯变化规律预测

基于Elman神经网络模型的二次供水系统余氯变化规律预测

扫码查看
氯是城镇饮用水系统中运用最为广泛的消毒剂,能够有效控制水中细菌滋生,二次供水系统的余氯是确保"最后一公里"水质安全的重要指标,建立二次供水系统余氯变化规律预测模型实现提前预警,对保障末端饮用水安全具有重要意义。文章通过相关性分析方法得出与余氯具有较强相关性的指标为浑浊度与温度,基于2022年上海市二次供水监测点的余氯、浑浊度和温度数据,采用机器学习方法对未来时刻的二次供水余氯进行预测,建立以当下时刻的余氯-浑浊度多指标、余氯-温度多指标和余氯单指标为输入的3种模型,并采用确定性系数(R2)、平均绝对误差(MAE)、平均偏差(MBE)以及均方根误差(RMSE)等多元评估标准来衡量模型性能。结果表明,3种模型的相对误差基本控制在10%以下,预测模型均可以满足实际二次供水监管点余氯的预测需求,按照预测准确度降序排列为:余氯-浑浊度预测模型、余氯自预测模型、余氯-温度预测模型。
Prediction of Residual Chlorine Variation in Secondary Water Supply Systems Based on Elman Neural Network Model
Chlorine is the most widely used disinfectant in urban drinking water systems,capable of effectively controlling bacterial growth in water.The residual chlorine in secondary water supply systems is a crucial index for ensuring the water quality safety of the"last mile".Establishing a predictive model for the variation of residual chlorine in secondary water supply systems to enable early warning is of significant importance for ensuring the safety of end-point drinking water.This study used correlation analysis to identify turbidity and temperature as indices strongly related to residual chlorine.Based on the 2022 data of residual chlorine,turbidity,and temperature from secondary water supply monitoring points in Shanghai,machine learning methods were applied to predict future residual chlorine levels.Three models were established using multiple indicators of current residual chlorine-turbidity,residual chlorine-temperature,and a single indicator of residual chlorine,and evaluated using certainty coefficient(R2),mean absolute error(MAE),mean bias error(MBE),and root mean square error(RMSE)metrics.The results showed that the relative errors of the three models were generally controlled below 10%,and all prediction models could meet the actual needs of residual chlorine prediction at secondary water supply monitoring points.The models were ranked in descending order of prediction accuracy as follows:residual chlorine-turbidity prediction model,residual chlorine self-prediction model,and residual chlorine-temperature prediction model.

machine learningprediction modeltime seriessecondary water supplyresidual chlorine

张心悦、徐斌、于大海、何欢

展开 >

同济大学环境科学与工程学院,上海 200092

上海市供水管理事务中心,上海 200081

机器学习 预测模型 时间序列 二次供水 余氯

2024

净水技术
上海市净水技术学会,上海市城乡建设和交通委员会科学技术委员会办公室

净水技术

CSTPCD
影响因子:0.643
ISSN:1009-0177
年,卷(期):2024.43(12)