首页|基于改进YOLOv7的钢材表面缺陷检测

基于改进YOLOv7的钢材表面缺陷检测

Steel Surface Defect Detection Based on Improved YOLOv7

扫码查看
钢材表面缺陷对于钢材行业来说是一个巨大的挑战.针对传统的钢材缺陷检测方法存在着效率低、检测精度不高等问题,基于YOLOv7 设计了一种AFSD-YOLOv7 模型进行实时的钢材表面缺陷检测.首先,在 YOLOv7 模型中使用一种轻量化卷积结构替换标准卷积结构,,以加速模型的推理过程;然后采用快速空间金字塔池化结构替换原始空间金字塔池化结构,以加速网络的特征提取过程;最后添加改进的ECA-Net注意力机制,以提升模型检测精度.实验结果表明,AFSD-YOLOv7 能够对钢材缺陷进行有效识别,相比 YOLOv7 模型,计算量减少了 54.8%,mAP提高了 3.2%,对于钢材表面缺陷检测具有实际应用价值.
Surface defects on steel are a significant challenge for the steel industry.Traditional steel defect detection methods suffer from low efficiency and accuracy.To address these issues,an AFSD-YOLOv7 model has been designed for real-time steel surface defect detection.First,a lightweight convolutional structure was used to replace the standard convolu-tional structure in the YOLOv7 model,speeding up the inference process.Next,a fast spatial pyramid pooling structure was used to replace the original spatial pyramid pooling structure to accelerate the network's feature extraction process.Finally,an improved ECA-Net attention mechanism was added to enhance the model′s detection accuracy.Experimental results show that AFSD-YOLOv7 can effectively identify steel defects.Compared to the YOLOv7 model,AFSD-YOLOv7 reduces compu-tation by 54.8%and improves mAP by 3.2%,indicating significant practical value for steel surface defect detection.

steeldefect detectionYOLOv7neural networksdeep learningattention mechanismstandard convolu-tion

付帅、凌铭、楚东港

展开 >

上海工程技术大学 电子与电气工程学院,上海 201620

钢材 缺陷检测 YOLOv7 神经网络 深度学习 注意力机制 标准卷积

上海市技术标准项目

21DZ2204300

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(2)