The operation status of transformer is of great significance to the stability and reliability of intelligent distri-bution room.In order to realize the accurate diagnosis of transformer faults,based on the analysis of dissolved gases in transformer oil,a multi-classifier joint fault diagnosis method based on the combined use of support vector data description(SVDD)and improved K-Means clustering is proposed.First,SVDD is used to construct a closed classification surface to realize"normal"and"fault"judgments.Then K-Means clustering analysis is carried out on the"fault"samples,which are automatically divided into five types:low energy discharge,medium and low temperature overheat,high energy discharge,high temperature overheat and partial discharge.At the same time,the concept of local density is proposed to automatically determine the initial clustering center of K-Means to improve the clustering performance.Finally,the transformer fault data of the intelligent distribution room is used to carry out the verification experiment.The results show that compared with the traditional support vector machine(SVM)and BP neural network model,the fault diagnosis accuracy of the proposed meth-od is improved by 9.8%and 8%,respectively.
intelligent distribution roomtransformer fault diagnosisanalysis of dissolved gas in oilsupport vector da-ta descriptionmulti-classifier association