首页|基于改进深度学习的人体姿态识别方法研究

基于改进深度学习的人体姿态识别方法研究

Research on Human Posture Recognition Method Based on Improved Deep Learning

扫码查看
针对现有 2D多人人体姿态识别方法存在的耗时长、准确率低等问题,在对人体姿态识别方法进行分析的基础上,提出了一种用于 2D多人人体姿态识别的改进复合场.引入空洞卷积模块降低参数量的同时提高模型准确性,引入 shuffleNet V2 网络替换主干网 ResNet提高模型识别速度.通过实验对所提方法的平均精确度、平均召回率和运行时间等进行分析.结果表明,与常规方法相比,所提方法对 2D多人人体姿态识别具有较高的识别准确率和速度,1~8 人的人体姿态平均识别时间为 75ms.为计算机视觉的研究提供了一定的参考.
Based on the analysis of existing 2D multi human body pose recognition methods,an improved composite field for 2D multi human body pose recognition is proposed to address the issues of long time consumption and low accuracy.In-troducing a hollow convolutional module to reduce the number of parameters while improving model accuracy,and introdu-cing shuffleNet V2 network to replace the backbone network ResNet to improve model recognition speed.Analyze the aver-age accuracy,average recall rate,and running time of the proposed method through experiments.The results show that com-pared with conventional methods,the proposed method has higher recognition accuracy and speed for 2D multi person human pose recognition,with an average recognition time of 75ms for 1-8 people.This provides a certain reference for the re-search of computer vision.

body posturecomposite fieldatrous convolution moduleShuffleNet V2 network2D multiple persons

刘宇

展开 >

清华大学 信息科学技术学院,北京 100062

人体姿态 复合场 空洞卷积模块 shuffleNet V2网络 2D多人

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(2)