首页|基于图像处理的光伏组件热斑缺陷检测方法

基于图像处理的光伏组件热斑缺陷检测方法

Photovoltaic Module Hot Spot Defect Detection Method Based on Image Processing

扫码查看
为精准检测光伏组件热斑缺陷,分析热斑所占面积和位置,提出了基于图像处理的光伏组件热斑缺陷检测方法.计算每一块区域热量发射功率,分析光伏组件热斑红热外图像灰度直方图特征.采用空间域方法处理图像中像素点,通过构建图像线性增强函数改善图像清晰度.在Image Net数据库上,提取热斑特征,采用B样条最小二乘拟合法,求取样条基函数关于范数的最佳逼近问题,获取热斑曲线和样本点之间偏差最小值,消除直方图中毛刺和局部起伏,检测出图像中热斑.实验结果可知,该方法正常情况下热斑面积结果与实际数据最小差值为0.1 cm2;非均匀性噪声影响情况下,热斑位置检测结果与原始图像一致,说明使用所研究方法检测结果精准.
In order to accurately detect the hot spot defects of photovoltaic modules,analyze the area and position occu-pied by the hot spots,and propose a thermal spot defect detection method for photovoltaic modules based on image process-ing.The heat emission power of each area was calculated,and the grayscale histogram characteristics of the red hot external image of the PV module were analyzed.The spatial domain method is used to process the pixels in the image,and the image clarity is improved by constructing the image linear enhancement function.On the Image Net database,the hot spot features are extracted,the B-spline least squares fitting is used,the best approximation problem of the spline basis function on the norm is obtained,the minimum deviation between the hot spot curve and the sample point is obtained,the glitch and local undulation in the histogram are eliminated,and the hot spot in the image is detected.The experimental results show that the minimum difference between the hot spot area results and the actual data under normal conditions is 0.1 cm2,and the hot spot position detection results are consistent with the original images under the influence of non-uniform noise,indicating that the detection results using the studied method are accurate.

image processingPV modulehot spot defect detectionB-splineleast squares fitting

林维修、李峰、王海峰、许育燕、金科扬

展开 >

宁波送变电建设有限公司运维分公司,浙江宁波 315000

图像处理 光伏组件 热斑缺陷检测 B样条 最小二乘拟合

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(3)