首页|基于机器视觉的配网带电作业机器人障碍物识别

基于机器视觉的配网带电作业机器人障碍物识别

Robot Obstacle Recognition for Live Operation in Distribution Network Based on Machine Vision

扫码查看
人眼长时间进行障碍物识别容易出现疲劳,导致障碍物识别误差大,因此提出了基于机器视觉的配网带电作业机器人障碍物识别.通过带电作业机器人搭载的相机,精准采集配网作业时的连续帧图像.利用多尺度Harris亚像素角点检测算法.提取图像特征点,并通过改进的k-d树最近邻搜索算法匹配特征点,得到匹配特征点对.建立机器人运动变换模型,并通过自适应滤波与阈值分割结合的方法,抑制自运动补偿后图像的背景信息,提取障碍物目标,完成障碍物识别.实验证明:该方法可有效采集配网作业时的图像,并且特征点匹配效果较好,障碍物识别结果与实际情况一致.
Human eyes are prone to fatigue when identifying obstacles for a long time,resulting in large error in obstacle identification.Therefore,a machine vision based obstacle identification method for live working robots in distribution net-works is proposed.The camera carried by the live working robot accurately captures continuous frame images during distri-bution network operations.Using multi-scale Harris subpixel corner detection algorithm,image feature points are extracted and matched using an improved k-d tree nearest neighbor search algorithm to obtain matching feature point pairs.Establish a robot motion transformation model,and combine adaptive filtering and threshold segmentation to suppress the background information of the image after motion compensation,extract obstacle targets,and complete obstacle recognition.Experi-ments show that this method can effectively collect images during distribution network operations,and the feature point matching effect is good.The obstacle recognition results are consistent with the actual situation.

machine visiondistribution networklive workingrobotobstacle identificationfeature point extraction

牛振勇、钟晓蓥、卢蓬锋、郭嘉伟、江东游

展开 >

广东电网有限责任公司广州白云供电局,广东广州 510400

广州南方电安科技有限公司,广东广州 511493

机器视觉 配电网 带电作业 机器人 障碍物识别 特征点提取

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(3)