首页|基于小样本异常特征挖掘算法的抽水蓄能电站主设备故障声纹检测技术

基于小样本异常特征挖掘算法的抽水蓄能电站主设备故障声纹检测技术

扫码查看
由于抽水蓄能电站中部分设备难以接近,导致采集有效信号的难度较大,为了降低设备故障检测中的漏检率与误检率,将小样本异常特征挖掘算法与声纹识别技术结合,提出一种新的抽水蓄能电站主设备故障检测方法.选取压电式加速度传感器作为声纹采集传感器设备,设定相关参数,并通过Pearson相关系数确定传感器布设位置,借助声纹数据采集模块采集运行状态数据.将EMD与小波变换结合对采集得到的主设备运行状态数据实施去噪,降低故障检测误差.采用小样本异常特征挖掘算法针对去噪数据集进行异常数据挖掘,将挖掘结果与声纹数据处理结合实现主设备故障检测.实验结果表明,所提方法不仅降低了故障检测的漏检率与误检率,而且能够克服干扰信号的影响,实用价值较高.
Voiceprint Detection Technology for Main Equipment Faults in Pumped Storage Power Plants Based on Small Sample Anomaly Feature Mining Algorithm
Due to the difficulty in accessing some equipment in pumped storage power plants,it is difficult to collect ef-fective signals.In order to reduce the missed and false detection rates in equipment fault detection,a new fault detection method for main equipment in pumped storage power plants is proposed by combining small sample anomaly feature mining algorithm with voiceprint recognition technology.Select a piezoelectric accelerometer as the voiceprint acquisition sensor de-vice,set relevant parameters,and determine the sensor placement position through Pearson correlation coefficient.Use the voiceprint data acquisition module to collect operating status data.Combining EMD with wavelet transform to denoise the collected operational status data of the main equipment and reduce fault detection errors.Using a small sample anomaly fea-ture mining algorithm for anomaly data mining on denoised datasets,combining the mining results with voiceprint data pro-cessing to achieve main device fault detection.The experimental results show that the proposed method not only reduces the missed detection rate and false detection rate of fault detection,but also overcomes the influence of interference signals,with high practical value.

small sample anomaly feature mining algorithmvoiceprint recognition technologypumped storage power plantsfault detectionvoiceprint acquisition sensor

于潇、李世昌、卢彬

展开 >

河北张河湾蓄能发电有限责任公司,河北石家庄 050001

小样本异常特征挖掘算法 声纹识别技术 抽水蓄能电站 故障检测 声纹采集传感器

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(4)