首页|基于模糊神经网络的车辆运行状态多维智能监测方法研究

基于模糊神经网络的车辆运行状态多维智能监测方法研究

Research on Multi-Dimensional Intelligent Monitoring Method for Vehicle Operation Status Based on Fuzzy Neural Network

扫码查看
车辆自动驾驶领域,其运行状态数据种类较多,特征模糊化明显,难以准确采集,导致车辆运行状态监测存在准确度低、精度低、时效慢等问题.为此,提出了基于模糊神经网络的车辆运行状态多维智能监测方法.首先,通过多传感器采集车辆运行状态数据,并使用自适应加权平均算法对采集到的数据实行融合处理;其次,通过自适应遗传算法和浮动搜索算法,获取车辆运行状态多融合数据的最优特征子集;最后,将车辆运行状态最优特征子集输入至模糊神经网络模型完成车辆运行状态多维智能监测.实验结果表明,所提方法能够实现对减速、正常、加速、抗蛇行四种车辆运行状态的准确监测,且对车辆运行状态的监测时效高,适用于实际应用.
In the field of vehicle autonomous driving,there are many types of operating status data,with obvious feature fuzziness and difficulty in accurately collecting,which leads to problems such as low accuracy,low accuracy,and slow time efficiency in vehicle operating status monitoring.Therefore,a multi-dimensional intelligent monitoring method for vehicle operation status based on fuzzy neural network is proposed.Firstly,vehicle operating status data is collected through multi-ple sensors,and the collected data is fused using an adaptive weighted average algorithm.Secondly,by using adaptive genet-ic algorithm and floating search algorithm,the optimal feature subset of vehicle operating state multi fusion data is obtained.Finally,the optimal feature subset of vehicle operation status is input into the fuzzy neural network model to complete multi-dimensional intelligent monitoring of vehicle operation status.The experimental results show that the proposed method can achieve accurate monitoring of four vehicle operating states:deceleration,normal,acceleration,and anti hunting,and has high monitoring efficiency for vehicle operating states,making it suitable for practical applications.

vehicle operation status monitoringmultiple sensorsadaptive weighted average algorithmoptimal feature subsetfuzzy neural network model

范文明、马宏伟、杨晓峰

展开 >

国能铁路装备有限责任公司,北京 100010

天津哈威克科技有限公司,天津 301799

车辆运行状态监测 多传感器 自适应加权平均算法 最优特征子集 模糊神经网络模型

2024

计算技术与自动化
湖南大学

计算技术与自动化

CSTPCD
影响因子:0.295
ISSN:1003-6199
年,卷(期):2024.43(4)