首页|基于社交圈层和注意力机制的信息热度预测

基于社交圈层和注意力机制的信息热度预测

Social Circle and Attention Based Information Popularity Prediction

扫码查看
社交网络现已成为现实世界中信息传播与扩散的主要媒介,对其中的热点信息进行建模和预测有着广泛的应用场景和商业价值,比如进行信息传播挖掘、广告推荐和用户行为分析等.目前的相关研究主要利用特征和时间序列进行建模,但是并没有考虑到社交网络中用户的社交圈层对于信息传播的作用.本文提出了一种基于社交圈层和注意力机制的热度预测模型SCAP(Social Circle and Attention based Popularity Prediction),首先对社交圈层进行定义,通过自动编码器提取用户历史文本序列的特征,对不同用户的社交圈层进行聚类划分,得到社交圈层特征.进而对于一条新发布的文本信息,通过长短期记忆网络与嵌入层提取其文本特征、用户特征和时序特征,并基于注意力机制,捕获到不同社交圈层对于该文本信息的影响程度,得到社交圈层注意力特征.最后将文本特征、用户特征、时序特征和社交圈层注意力特征进行特征融合,并通过两个全连接层进行建模学习,对社交信息的热度进行预测.在推特、微博和豆瓣等四个数据集上的实验结果表明,SCAP模型的预测表现相比于多个对比模型总体呈优,在不同数据集上均方误差(MSE)分别降低了 0.017,0.022,0.021和0.031,F1分数分别提升0.034,0.021,0.034和0.025,能够较为准确地预测社交信息的热度.本文同时探究了不同实验参数对于模型的影响效果,如用户历史文本序列的数量、社交圈层的数量和时间序列的长度,最后验证了模型输入的各个特征和注意力机制的引入对于模型预测性能提升的有效性,在推特数据集中,引入社交圈层和注意力机制,模型的MSE指标分别降低了0.065和 0.019.

郑作武、邵斯绮、高晓沨、陈贵海

展开 >

上海交通大学计算机科学与工程系 上海 200240

社交网络 热度预测 社交圈层 注意力机制 用户偏好

本课题得到国家重点研发项目国家自然科学基金国家自然科学基金CCF-腾讯科研基金腾讯广告犀牛鸟专项研究计划华为云项目

2020YFB17079036187223861972254RAGR20200105FR202001TC20201127009

2021

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCDCSCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2021.44(5)
  • 6
  • 3