首页|基于交互引导的问答对联合生成模型

基于交互引导的问答对联合生成模型

扫码查看
大规模问答对的自动生成在知识问答库构建和机器阅读理解等许多应用具有关键价值.尽管其重要性已得到广泛认可,现有问答对生成方法仍面临着严峻挑战.首先,在传统的问答对生成模型中,抽取式的答案获取方法难以适用于复杂的自然交互场景.相比较而言,生成式模型通过对文本的语义理解,能够自动生成表述更加自然的答案.其次,对于问答对生成任务来说,为了防止生成的答案和问题出现语义上的不匹配,需要更全面地捕捉并增强答案生成和问题生成两个子任务之间的交互.最后,由于答案抽取和问题生成存在任务难度的差异,这两个任务在联合训练的过程中会出现任务之间的优化不平衡问题.为此,本文提出了一个基于交互引导的问答对联合生成模型(Interaction-Guided Joint Abstractive QAPs Generation Model,IGJA-QAP).具体而言,本文设计了一个带有答案引导的多头门机制的联合生成模型,同时对两个子任务进行统一建模并有效地捕获和增强它们之间的信息交互,从而可以生成语义上匹配的问答对.本文在三个大规模数据集SQuAD、NewQA和CoQA上进行了综合全面的实验分析.本文提出的模型在答案生成任务上METEOR值平均分别超出其他最佳方法3.0%、5.9%和4.3%,问题生成任务上METEOR值平均分别超出其他最佳方法1.5%、0.5%和2.1%.实验结果表明,本文提出的模型达到了目前最高的性能.
Question-Answer Pairs Generation Based on Interaction-Guided Joint Abstractive Model
Automatically generating large-scale question-answer pairs is valuable for many applications such as knowledge base construction and machine reading comprehension.Although its importance has been widely recognized,existing approaches to question-answer pair generation still face serious challenges.First,in traditional question-answer pair generation models,extractive answer acquisition methods are difficult to apply to complex natural interaction scenarios.In contrast,generative models can automatically generate answers with more natural expressions through semantic understanding of text.Second,for the question-answer pair generation task,the interaction between the two subtasks of answer generation and question generation needs to be captured and enhanced more comprehensively in order to prevent semantic mismatches between the generated answers and questions.Finally,due to the difference in task difficulty between answer extraction and question generation,the joint learning of the two tasks of answer extraction and question generation can lead to an optimization imbalance between the two subtasks during training.For this reason,this paper proposes an Interaction-Guided Joint Abstractive QAPs Generation Model(IGJA-QAP).Specifically,this paper designs a joint generation model with an answer-guided multiheaded gate mechanism that simultaneously models two subtasks in a unified manner and efficiently captures and enhances the information interactions between them,so that semantically matching question-answer pairs can be generated.In this paper,a comprehensive experimental analysis is conducted on three large-scale datasets,SQuAD,NewQA and CoQA.The proposed model outperforms the best methods by 3.0%,5.9%and 4.3%on average for the answer generation task and 1.5%,0.5%and 2.1%on average for the question generation task,respectively.The experimental results demonstrate that our model achieves state-of-the-art performance.

question-answer pairs generationunified abstractive modelmulti-head answer-guide gatepointer networkmutual optimization

刘杰、林绍鑫、王善鹏

展开 >

南开大学人工智能学院 天津 300350

问答对生成 统一生成式模型 答案引导的多头门 指针网络 相互优化

国家自然科学基金

61976119

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(2)
  • 2