首页|广告点击率预估的逐层残差交互网络

广告点击率预估的逐层残差交互网络

扫码查看
网络广告费的收取通常是以用户的点击次数来计算的,因此如何准确地预估点击率(CTR)是广告公司十分关心的问题.当前先进水平的方法集中在构建各种高阶特征交互模型来预估CTR,但是高阶特征交互会丢失低阶信息,尤其是丢失原始特征的信息.为此,本文提出一个新的逐层残差交互网络,它在每次交互时都考虑原始特征的引导作用,被命名为逐层残差交互网(LRIN).LRIN强调高阶特征交互应该建立在原始特征逐层交互的基础上.n阶特征交互由原始特征与n-1阶特征通过元素积运算得到.进而,本文引入了多尺度方法来设计注意力网络.受逐层交互的影响,注意力网络也被设计成多层,称之为逐层注意力网络.为了将二者结合起来,本文提出将逐层残差交互网络的输出作为逐层注意力网络的权重,由此形成了一种新的双网络训练模型.在多个benchmark数据集上的实验结果表明,LRIN的性能比当前先进的方法在Criteo数据集上平均提高1.24%,在Avazu数据集上平均提高2.16%,在MovieLens-1M数据集上平均提高了 1.3%,在Book-Crossing数据集上平均提高了 1.27%.
Layer-by-Layer Residual Interactive Network Approach for Advertisement Click-Through Rate Prediction
Online advertising fees are charged based on the number of times that users click on ads,and therefore how to accurately predict Click-Through Rate(CTR)is a very concerned issue for advertising companies.Current state-of-the-art methods focus on constructing various high-order feature interaction models to predict CTR;however,high-order feature interactions will lose low-order information,especially the information of original features.To this end,a novel layer-by-layer residual interaction network framework is proposed in this paper,which leverages the guiding role of the original features at each interaction,and is named as the Layer-by-layer Residual Interaction Network(LRIN).LRIN emphasizes that higher-order feature interactions should be based on the interactions of original features layer by layer.The interaction of n-order features is obtained by the element-wise product between the original features and the n-1-order features.Moreover,a multi-scale approach is introduced to design attention network.Affected by layer-by-layer interaction,the attention network is also designed into multiple layers,which is called layer-by-layer attention networks.In order to combine the two,this paper proposes to take the outputs of the layer-by-layer residual interaction network as the weights of the layer-by-layer attention network,and thus forms a novel dual-network training model.The experimental results on multiple benchmark datasets indicate that the performance of LRIN is on average 1.24%better than current advanced methods on the Criteo dataset,2.16%better on the Avazu dataset,1.3%better on the MovieLens-1M dataset,and 1.27%better on the Book-crossing dataset.

residual networklayer-by-layerfeature interactionCTR predictionattention

尹云飞、龙连杰、黄发良、吴开贵

展开 >

重庆大学计算机学院 重庆 400044

广西人机交互与智能决策重点实验室 南宁 530100

残差网络 逐层 特征交互 CTR预估 注意力

国家自然科学基金中央高校基本科研业务费项目广西人机交互与智能决策重点实验室开放基金项目

619620382022-CDJKYJH023GXHIID2208

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(3)
  • 41