首页|用户生成内容场景下角色导向图神经推荐方法

用户生成内容场景下角色导向图神经推荐方法

扫码查看
近年来互联网的飞速发展不断改变着信息的生产和传递方式,随之出现了用户使用互联网的新方式——用户生成内容(User-Generated Content,UGC).该场景中内容以传播速度快、获取成本低等优势迅速占据互联网信息传播的重要地位.不同于传统推荐场景,UGC场景下用户同时扮演生产者和消费者双重角色,这使得在构建推荐模型时既需要考虑消费者与内容之间的交互信息,也需关注内容生产者对于消费者决策的影响.因此,UGC场景下个性化推荐算法研究的关键在于如何充分挖掘消费者-内容和消费者-生产者之间的关联关系.在面向UGC场景的推荐研究中,比较有代表性的模型为CPRec,该模型虽取得一定进展,但仍存在两点不足之处.其一,在模型构建层面,未能显式建模消费者-内容与消费者-生产者之间的高阶连通关系,难以学习出高质量的节点表征.其二,在模型优化层面,无法区分每个观测数据在不同训练阶段的贡献度,将影响推荐结果的质量.为此,本文提出一种新颖的角色导向图神经推荐方法RGNRec(Role-Guided Graph Neural Recommendation)用于UGC场景的个性化排序任务.特别地,基于用户的历史行为数据与内容的创作者信息分别构建了消费者-内容交互图和消费者-生产者交互图.进一步,为了显式捕获两种交互图中的高阶连通信息,构建一种双通道线性传播模块,同时刻画了消费者兴趣与内容生产者影响的扩散过程.最终,提出设计一种自适应的正样本权重生成策略,将其融入非采样损失函数,并建立双层优化机制来学习模型的参数.本文的核心贡献包括:(1)引入双通道线性传播模块,以显式解耦出自身兴趣与内容生产者效应对于用户偏好建模的不同贡献度;(2)提出权重自适应的非采样损失函数,以解决不同观测样例在模型不同训练阶段贡献不同的问题.本文分别采用经典的和最先进的图神经网络方法作为基准,在3个UGC场景Pinterest、Recipes和Reddit下进行了实验对比.在整体推荐性能方面,无论模型精度亦或训练效率上均优于各基准方法,尤其在Precision@10指标上获得了 4.31%~17.83%的提升;然后通过消融实验验证了双通道线性传播模块和权重自适应优化机制的合理性与必要性;最后通过实验验证了本文方法在缓解数据稀疏和用户冷启动方面的优越性.
Role-Guided Graph Neural Recommendation in User-Generated Content Scenarios
Personalized recommendation is a vital and indispensable tool at overcoming the infor-mation overload problem.It can help users to find their desired information and assist content providers to obtain fruitful profits.It has been widely deployed in various fields,such as news,e-commerce applications,location-based services,etc.In these classical scenarios,a user generally plays a single role(i.e.,customer).With the rapid development of the Internet,we have witnessed a revolution in information production and transmission manner.In this case,there is a new way to access the Internet,i.e.,user-generated content(UGC).Owing to the advantages of rapid spread and easy access,it has been an important fashion of information propagation.In contrast with traditional recommendation scenarios,a user in UGC plays dual roles:consumer and producer.When building a personalized recommendation,we consider not only the consumer-item interactions,but also the impact of a producer for user decision making.Thereby,how to sufficiently capture the relationships of consumer-item and consumer-producer is the key to an effective recommendation.In the UGC-based recommendation studies,CPRec is the most representative model.Despite its effectiveness,we argue that it still has two defects.On the one hand,in perspective of model construction,it fails to explicitly exploit high-order connectivity behind consumer-item interactions and consumer-producer relationships.As a result,it is non-trivial to learn high-quality embeddings for all users and producers.On the other hand,in perspective of model optimization,it fails to differentiate the importance of each observed instance during training,which results in the suboptimal recommendation results.In light of these two defects,we propose a Role-Guided Graph Neural Recommendation(RGNRec)for the personalized ranking task in UGC scenarios.Specifically,we first construct a consumer-item interaction graph and a consumer-producer interaction graph based on the users'historical behaviors and the item's producer information.Furthermore,in order to explicitly capture the high-order connectivity,we design a dual-channel linear propagation module upon both graphs.In this way,our solution simulates the diffusion process of user interest and producer influence.Lastly,we contribute an adaptive weight strategy for the non-sampling loss function,and view the overall training procedure as a bi-level optimization problem.The key contributions of this paper are as follows:(1)introduce the dual-channel linear propagation module,which explicitly disentangles the users'motives behind individual taste and the influence of a producer;(2)propose an adaptive weighted non-sampling loss function,which could adjust the weight coefficient of each observed instance at different training periods.We choose the classical recommenders and several recent state-of-the-art graph neural networks as baselines and perform extensive experiments under three UGC scenarios:Pinterest,Recipes,Reddit.In terms of overall performance comparison,RGNRec consistently and significantly surpasses all baselines in model effectiveness and training efficiency,especially improving Precision@10 by 4.31%-17.83%.Then,ablation studies validate the rationality and necessity of the dual-channel linear propagation module and the optimization mechanism with an adaptive weight strategy.Finally,the related experiments demonstrate the strengths of our proposed method in alleviating data sparsity and user cold-start issues.

recommender systemsgraph neural networksuser-generated contentdual rolesnon-sampling learning

娄铮铮、朱军娇、张万闯、吴宾

展开 >

郑州大学计算机与人工智能学院 郑州 450001

推荐系统 图神经网络 用户生成内容 双重角色 非采样学习

国家自然科学基金青年基金中国博士后科学基金河南省重点研发与推广专项(科技攻关)

621023692023M743188232102211045

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(6)
  • 5