首页|基于完形填空的方面级情感四元组预测

基于完形填空的方面级情感四元组预测

扫码查看
方面情感四元组预测(ASQP)任务旨在从给定的评论语句中提取所有方面词以及相应的方面类别、观点表达和情感极性,有助于全面了解用户对产品或服务不同方面的评价情况.现有情感四元组预测方法主要存在以下局限:(1)判别式模型没有利用prompt捕获情感元素之间的语义关系;(2)生成式模型要么简单地将情感元素类型标签组合形成prompt,缺乏理解标签类型涵义的语境;要么将离散模板作为解码器的输入,而编码器则无法捕获到模板中情感元素之间的语义关系.为了缓解这些问题,本文首先基于完形填空思想研制离散和连续2类prompt,提供理解4个情感元素类型涵义的语境,帮助模型更好地捕获情感元素之间的语义关系;然后,基于设计的prompt,提出C-ASQP框架,包含判别式模型DC-ASQP和生成式模型GC-ASQP.在DC-ASQP中,采用2阶段策略,先预测4个情感元素中2个较为容易的情感元素,再将预测结果嵌入到设计的prompt中,帮助模型理解情感元素类型的涵义,从而有效预测另外2个情感元素.在GC-ASQP中,将设计的prompt作为编码器的输入,借助预训练模型的学习模式,充分利用预训练模型蕴含的知识提升四元组的生成效果.实验结果显示,DC-ASQP模型在4个常用数据集上的F1值相比同类判别式最优模型分别提高4.70%、6.48%、6.97%和2.60%,GC-ASQP模型的F1值比最优基准模型分别提高0.86%、1.67%、0.15%和1.02%,验证了将ASQP建模为完形填空任务的有效性,所设计的2类prompt以及C-ASQP框架是有效的.
Modeling Aspect Sentiment Quad Prediction as Cloze Task
The aspect sentiment quad prediction(ASQP)task aims to extract all aspect terms along with the corresponding aspect categories,opinion expressions,and sentiment polarities from a given review sentence,providing a holistic understanding through user evaluation of different aspects of a product or service.Existing ASQP methods suffer from the following limitations:(1)Discriminative models fail to capture the semantic relations between sentiment elements using prompts;(2)Generative models either merely combine sentiment element type labels to form prompts,lacking contextual understanding of label semantics,or use a discrete template as input to the decoder,which prevents the encoder from capturing the semantic relations between sentiment elements in the template.To alleviate these issues,this study initially develops two types of prompts,discrete and continuous prompts,based on the cloze-style methodology.These prompts provide a contextual understanding of the meanings of the four sentiment element types and aid in capturing semantic relations between sentiment elements more effectively.Discrete prompts are designed using human prior knowledge,whereas continuous prompts directly add virtual tokens between sentiment elements to represent their semantic relationships and employ prompt-tuning to enable the model to autonomously find the optimal prompt in a continuous semantic space.To enhance the model's capability to autonomously find the optimal prompt in the semantic space,this study designs suitable continuous prompts for all 24 permutations of the four sentiment element types and uses a data augmentation strategy to facilitate cooperative learning among multiple continuous prompts.Subsequently,based on the designed prompts,we propose the C-ASQP framework,which includes the discriminative model DC-ASQP and the generative model GC-ASQP.In DC-ASQP,a two-stage strategy is employed to first extract the aspect category and sentiment polarity from the review sentences,then embed the predicted aspect category and sentiment polarity into the designed prompt,helping the model to extract the corresponding aspect and opinion terms through the label semantics of the aspect category and sentiment polarity and the semantic relationships between all four sentiment elements.In GC-ASQP,the cloze-style designed prompts are concatenated to the review sentences as inputs for the encoder,leveraging the learning patterns of pretrained models to enhance the generation of aspect sentiment quadruples.Moreover,this study explores the effects on the performance of the GC-ASQP model in terms of the order of sentiment elements in the prompts,different decoding strategies,and various multi-prompt data augmentation strategies.Extensive experiments conducted on four widely used datasets show that the DC-ASQP model achieves F1 scores improvements of 4.70%,6.48%,6.97%,and 2.60%,respectively,compared to the best-performing discriminative models.In comparison to the top baseline model utilizing a single prompt(template),the GC-ASQP model based on a single discrete prompt improves F1 scores by 2.20%,1.80%,1.26%,and 0.96%,respectively.Utilizing a data augmentation strategy,the F1 scores of the GC-ASQP model with 15 continuous prompts outperforms the state-of-the-art by 0.86%,1.67%,0.15%,and 1.02%,respectively.These results not only validate the effectiveness of modeling ASQP as cloze tasks but also prove the efficacy of the designed two types of prompts and the C-ASQP framework.

aspect sentiment quad predictioncloze taskdiscrete and continuous promptsdiscriminative and generative modelC-ASQP framework

彭文忠、夏家莉、万齐智、刘德喜、万本庭、曹重华、夏池玉

展开 >

江西财经大学信息管理学院 南昌 330032

江西财经大学财经数据科学重点实验室 南昌 330013

江西财经大学软件与物联网工程学院 南昌 330032

江西财经大学数据与知识工程江西省高校重点实验室 南昌 330013

展开 >

方面情感四元组预测 完形填空 离散和连续prompt 判别式和生成式模型 C-ASQP框架

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目江西省主要学科学术和技术带头人培养计划领军人才项目江西省自然科学基金项目江西省教育厅科学技术研究项目江西省教育厅科学技术研究项目江西省社科基金项目教育部人文社会科学研究项目

62272206622722056207611220213BCJL2204120212ACB202002GJJ2200560GJJ220050123TQ0222YJA880051

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(8)
  • 14