首页|高效的隐私保护多方多数据排序

高效的隐私保护多方多数据排序

扫码查看
安全多方计算允许具有私密输入的多个参与方联合计算一个多输入函数而不泄露各参与方私有输入的任何信息,因此近年来受到广泛关注.作为安全多方计算中的一个基础问题,隐私保护排序允许多个参与方在不泄露数据集隐私的前提下计算多个数据集的排序结果,广泛应用于产品定价、拍卖等场景.现有的隐私保护排序协议大多只支持两个参与方.而已有的多方多数据排序协议通信开销大、计算复杂度高,整体效率较低.现有隐私保护排序协议均未考虑恶意参与者的穷举攻击,因此安全保护不足.对此,本文提出一个高效的隐私保护多方多数据排序协议.多个参与方仅需O(1)轮交互即可以隐私保护的方式获得其持有的多个数据的排序结果.具体来讲,本文设计一种基于多项式的编码方法,将参与方的数据集编码为一个多项式,其每项的指数和系数分别代表数据和该数据的个数.通过多项式加法可实现多个参与方数据集的排序.同时,本文设计了多项式加密、聚合多项式生成和解密多项式生成算法,在保证计算正确性的同时实现多项式的隐私保护.最后,各参与方通过不经意传输技术获得排序结果.本文定义了不合谋参与方穷举攻击下的恶意安全.安全性分析表明本文协议不仅实现了半诚实安全性,而且达到了不合谋恶意用户穷举攻击的恶意安全性.此外,大量实验表明本文提出的协议在通信和计算方面都十分高效.如当参与方数量为15、每个参与方持有20 000个数据、数据上界为500 000时,本文协议的通信和计算开销分别为898.44 MB和69.76 s,仅为LDYW协议的12.08%和76.85%;而相对于AHM+方案,本文协议在通信开销仅增加约4倍的情况下使计算效率提升了约20倍.
Towards Efficient Privacy-Preserving Multi-Party Multi-Data Sorting
In recent years,secure multi-party computation has received extensive attention in academia and industry.Secure multi-party computation allows multiple participants with private inputs to jointly compute a multi-input function without revealing any information about the private inputs of each participant,which makes the data available but invisible.As a fundamental problem in secure multi-party computation,privacy-preserving sorting allows multiple participants to compute the joint sorting result of multiple datasets without disclosing the privacy of the datasets and the sorting result,which has a wide range of application needs and values,such as product pricing,auctions,interest recommendations.Most of the existing privacy-preserving sorting protocols only support two participants,and cannot meet the joint sorting requirements of multiple participants in practical scenarios.The existing multi-party multi-data sorting protocols have the problems of high communication overhead,high computational complexity.As a result,they all suffer low overall efficiency.At the same time,the existing privacy-preserving sorting protocols do not consider the malicious security model of exhaustive attacks by malicious participants,and only realize security under the semi-honest adversary model,thus providing insufficient security protection against the more realistic malicious adversary model.In this paper,we propose an efficient privacy-preserving multi-party multi-data sorting protocol to overcome the above problems.Through this protocol,multiple participants can collectively compute the sorting results of their data in a privacy-preserving way with only O(1)rounds of interaction.Specifically,this paper designs a polynomial-based encoding method that encodes a participant's dataset as a polynomial.In such a polynomial,the exponent and coefficient represent the data and the number of the data,respectively.Therefore,the sorting of multiple participant datasets can be realized by polynomial addition.For the above polynomial-based encoding algorithms,this paper also proposes polynomial encryption,aggregate polynomial generation,and decryption polynomial generation algorithms to realize the privacy protection of the encoded polynomials of each dataset based on the guarantee of computational correctness.The above algorithms can ensure the security of the encoded polynomials at the cost of low computational and communication overheads.Finally,each participant obtains the sorting result in a privacy-preserving way by means of communication-efficient oblivious transfer.In this paper,we consider a more realistic security model,provide for the first time the definition of malicious security under the non-colluding participant exhaustive attack,and define ideal functionalities of privacy-preserving sorting in different security models.The security analysis shows that the proposed protocol not only achieves semi-honest security,but also achieves malicious security against the exhaustive attack of non-colluding malicious users.In addition,a large number of experiments show that the proposed protocol is very efficient in both communication and computation.For example,when the number of participants is 15,each participant holds 20 000 data,and the upper bound of data is 500 000,our protocol's communication and computation overheads are 898.44 MB and 69.76 s,which are only 12.08%and 76.85%of that of the LDYW protocol.Compared with the AHM+scheme,our protocol's computational efficiency is improved by about 20 times with only 4 times increase in the communication overhead.

privacy computingsecure multi-party sortingsecure data analysisprivacy protectionsorting

商帅、李雄、张文琪、汪小芬、李哲涛、张小松

展开 >

电子科技大学计算机科学与工程学院(网络空间安全学院) 成都 611731

四川大学数据安全防护与智能治理教育部重点实验室 成都 610065

电子科技大学(深圳)高等研究院 广东 深圳 518110

暨南大学网络安全检测与防护国家地方联合工程研究中心 广州 510632

暨南大学数据安全与隐私保护广东省重点实验室 广州 510632

暨南大学信息科学技术学院 广州 510632

展开 >

隐私计算 安全多方排序 安全数据分析 隐私保护 排序

国家自然基金项目重点项目国家自然基金项目面上项目国家自然基金项目四川省自然科学基金面上项目四川大学数据安全防护与智能治理教育部重点实验室开放课题

6233201862072078622711282022NSFSC0550SCUSAKFKT202303Z

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(8)
  • 5