首页|gEdge:基于容器技术的云边协同的异构计算框架

gEdge:基于容器技术的云边协同的异构计算框架

扫码查看
由于按需灵活配置、高可用性、高资源利用率等优点,云计算技术成为过去十年的主流计算范式.随着万物互联时代的到来,单独依赖云计算技术已经无法满足数以亿计的IoT设备及其数据流量的需求.边缘计算可以被看作是云计算的进化,它因5G网络和物联网的崛起而诞生.随着云游戏、VR技术以及人工智能技术在日常生活中的广泛运用,对计算资源的需求也在日渐增长.然而,受体积与功耗限制,处于边缘的节点设备算力较弱.本文提出了 gEdge:一种基于容器技术的云边协同的异构计算框架.该框架通过GPU虚拟化技术,将云端的物理GPU资源分为多块虚拟GPU资源,按需为边缘节点提供GPU算力资源,并且对用户容器无感知.实验表明,使用gEdge框架使边缘节点使用的容器镜像体积降低了 48.8%,容器启动时间降低了 35.5%,平均相对运行速度提高了 213%.
gEdge:A Container-Based Cloud-Edge Collaboration Framework for Heterogeneous Computing
The advantages of flexible on-demand provisioning,high availability,and high resource utilization have made cloud computing technology the dominant computing paradigm of the past decade.With the advent of the Internet of Everything era,relying on cloud computing technology alone can no longer meet the demands of hundreds of millions of IoT(Internet of Things)devices and their data traffic.Edge computing can be seen as an evolution of cloud computing,emerging from the rise of 5G networks and the IoT.With the widespread use of cloud gaming,VR(Virtual Reality)technology,and artificial intelligence technology in daily life,the demand for computing resources is growing day by day.Restricted by size,weight,and power,the node devices at the edge have weak computing resources.In this paper,we propose gEdge,a cloud-edge collaboration framework for heterogeneous computing based on container technology.The framework divides the physical GPU resources in the cloud into multiple virtual GPU resources,provides GPU compute resources for the edge nodes on demand,and is transparent to user containers,through GPU virtualization technology.Experiments show that the use of the gEdge framework can reduce the container image size used by edge nodes by 48.8%,container start-up time by 35.5%,and average relative running speed by 213%.

graphics processing unitsvirtualizationcontaineredge computingcloud-edge collaboration

汪沄、汤冬劼、郭开诚、戚正伟、管海兵

展开 >

上海交通大学电子信息与电气工程学院 上海 200240

图形处理器 虚拟化技术 容器技术 边缘计算 云边协同

国家自然科学基金国家自然科学基金

6173201062141218

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(8)
  • 4