首页|一种多无人机辅助的LoRa网络节能数据采集方法

一种多无人机辅助的LoRa网络节能数据采集方法

扫码查看
随着物联网的快速发展,低功耗广域网得到了广泛应用,其中LoRa是一个突出的代表.LoRa网络非常适用于地形不规则、蜂窝网络覆盖有限的复杂数据采集场景.然而,由于网络环境动态变化、通信需求多样化以及网关固定部署等因素,传统LoRa网络在能效和生命周期方面面临挑战,导致终端设备之间能量消耗不均衡.为了解决这些问题,本文提出了一种基于多无人机辅助的大规模LoRa网络节能数据采集方法.通过利用搭载LoRa网关的无人机,实现了对终端设备的移动"空对地"数据采集.该问题被建模为一个混合整数非凸优化问题,考虑了无人机-LoRa通信参数和无人机机载能量约束之间的耦合.为了求解这一复杂问题,引入了一系列技术对原问题进行分解,将其转化为几个子问题.所提出的方法联合优化了终端设备的通信调度策略、无人机的三维飞行轨迹和传输参数.通过利用块坐标下降法、连续凸逼近和序列线性规划方法迭代求解这些子问题,获得了高质量的次优解.优化目标是在避免多无人机碰撞并满足无人机机载能量约束的同时,最小化LoRa终端设备的数据传输能耗.在三种不同规模的LoRa网络下进行了数值仿真,评估了所提方法的性能.结果表明,与现有的固定网关方案相比,所提出的多无人机辅助方法在不同网络规模下平均提高了 26.65倍的整体终端能效.此外,与固定无人机飞行路径方案相比,所提方法平均提高了 6.2倍的整体终端能效.本研究突出了利用无人机移动性和多网关部署来提高大规模LoRa网络能效和延长网络生命周期的优势.所提出的方法为复杂物联网场景下的节能数据采集提供了一种有前景的解决方案,与传统的固定网关和无人机辅助方法相比具有显著的改进.
A Multi-UAV-Assisted Energy-Saving Data Collection for LoRa Networks
With the rapid development of Internet of Things(IoT)technologies,Low-power Wide-area Networks(LPWANs)have emerged as a key enabler for large-scale,long-range wireless communication.Among LPWAN technologies,LoRa has gained significant attention due to its advantages of wide coverage,low power consumption and cost-effectiveness.However,LoRa networks face challenges in energy efficiency and network lifetime,particularly in complex data collection scenarios with dynamic environments,diverse communication requirements,and fixed gateway deployments.These factors lead to uneven energy consumption among end devices and limit the overall performance of LoRa networks.To address these challenges,this paper proposes an energy-efficient data collection method for large-scale LoRa networks assisted by multiple Unmanned Aerial Vehicles(UAVs).The proposed approach leverages UAVs equipped with LoRa gateways to enable mobile"air-to-ground"data collection from end devices.By formulating the problem as a mixed-integer non-convex optimization problem,the coupling between UAV-LoRa communication parameters and UAV onboard energy constraints is considered.To tackle the complexity of the optimization problem,a series of techniques are introduced to decompose the original problem into several sub-problems.The proposed method jointly optimizes the communication scheduling strategy of end devices,the three-dimensional flight trajectories of UAVs,and the transmission parameters of end devices.Through an iterative process using block coordinate descent,successive convex approximation,and sequential linear programming,a high-quality suboptimal solution is obtained.The objective is to minimize the data transmission energy consumption of LoRa end devices while ensuring collision avoidance among multiple UAVs and satisfying the onboard energy constraints of UAVs.Extensive numerical simulations are conducted to evaluate the performance of the proposed method under three different scales of LoRa networks.The results demonstrate that,compared to existing fixed gateway schemes,the proposed multi-UAV-assisted approach achieves an average improvement of 26.65 times in overall end-device energy efficiency across various network scales.Furthermore,in comparison with fixed UAV flight path schemes,the proposed method attains an average improvement of 6.2 times in overall end-device energy efficiency.The research highlights the advantages of exploiting UAV mobility and multi-gateway deployment to enhance the energy efficiency and prolong the lifetime of large-scale LoRa networks.By dynamically adjusting the positions of UAV-mounted gateways and optimizing the communication parameters,the proposed method effectively balances the energy consumption among end devices and improves the overall network performance.The adaptability and flexibility of the UAV-assisted approach make it particularly suitable for complex IoT scenarios with diverse terrain and limited infrastructure.In conclusion,this paper presents a groundbreaking solution for energy-efficient data collection in large-scale LoRa networks by leveraging the capabilities of multiple UAVs.The proposed method significantly outperforms traditional fixed gateway and UAV-assisted approaches in terms of end-device energy efficiency and network lifetime.The research contributes to the advancement of energy-efficient IoT data collection techniques and paves the way for the deployment of sustainable,scalable,and resilient LoRa networks in a wide range of application domains.Furthermore,the insights gained from this study can be extended to other LPWAN technologies,fostering the development of energy-efficient and robust IoT ecosystems.

LoRa networksdata collectionenergy savingmulti-UAV-assistednon-convex optimization

熊润群、张华俊、梁川、陈慈媛、徐祝庆、王苏扬

展开 >

东南大学计算机科学与工程学院 南京 211189

江苏金恒信息科技股份有限公司 南京 211505

LoRa网络 数据采集 能耗优化 多无人机辅助 非凸优化

国家重点研发计划项目国家自然科学基金面上项目国家自然科学基金面上项目Jiangsu Provincial Key Laboratory of Network and Information SecurityKey Laboratory of Computer Network and Information Integration of the Ministry of Education of China

2021YFB29001006217209162232004BM200320193K-9

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(8)