首页|自适应双坐标系的差分进化算法求解混合变量优化问题

自适应双坐标系的差分进化算法求解混合变量优化问题

扫码查看
如何设计求解混合变量优化问题(Mixed-variable Optimization Problems,MVOPs)的相关算法,是计算机算法设计与分析领域中的一个重要研究方向.该问题的求解难点在于需同时优化连续型和离散型决策变量,目前进化算法(Evolutionary Algorithms,EAs)是求解该问题的一种有效手段.然而,现有的相关EAs忽略了问题变量之间的相关性,导致算法性能还存在一定不足.为此,本文从变量相关性角度出发,提出了一种自适应双坐标系的差分进化算法来求解MVOPs.首先,利用种群的协方差矩阵信息来构建特征坐标系,实现在特征坐标系下执行算法的相关操作,以松弛连续变量与离散变量之间的相关性;其次,为避免种群多样性丢失,仍保留了原坐标系,并设计了一种自适应策略来应用特征坐标系和原坐标系,以发挥双坐标系的优势;最后,为提高离散变量的优化效果,专门设计了一种基于离散变量相关性的局部搜索策略,以增强算法的整体性能.为验证本文方法性能,在一套包含28个测试函数的通用测试集上进行了大量实验,与5种求解MVOPs的知名EAs进行了对比,结果表明本文方法有更好性能.此外,在一个实际MVOP上,即焊接梁设计问题,本文方法能取得目前已知最好解.本文方法为计算机算法设计和分析领域的相关工作提供了新的思路.
Differential Evolution Algorithm Based on Adaptive Bi-Coordinate Systems for Mixed-Variable Optimization Problem
How to design algorithms for solving Mixed-variable Optimization Problems(MVOPs)is an important research direction in the field of computer algorithm design and analy-sis.The difficulty of this problem lies in the need to optimize both continuous and discrete deci-sion variables,and Evolutionary Algorithms(EAs)are an effective means to solve this problem.However,there exists an issue that the correlation between problem variables is ignored,which deteriorates the algorithm performance to some extent.Therefore,in this work,a differential e-volution algorithm based on adaptive bi-coordinate systems is proposed to solve MVOPs from the perspective of variable correlation.Firstly,the covariance matrix information of the population is used to establish the eigen coordinate system,so that the relevant operations of the algorithm can be performed in the eigen coordinate system to relax the correlation between continuous and dis-crete variables;secondly,to avoid the loss of population diversity,the original coordinate system is retained,while an adaptive strategy is designed to switch the eigen coordinate system and the original coordinate system for taking full advantages of the two coordinate systems;finally,to better optimize the discrete variables,a local search strategy based on the correlation between discrete variables is specially designed,which is helpful for the overall performance of the algo-rithm.To verify our approach,extensive experiments are conducted on a wildly used test suite containing 28 test functions,and the comparative results with five well-known EAs of solving MVOPs confirm that the proposed approach owns better performance.Besides,on a real-world MVOP,i.e.,the welded beam design problem,and our approach is able to obtain the ever best-known solution to the problem.Our approach provides a new idea for the related work in the field of computer algorithm design and analysis.

mixed-variable optimizationdifferential evolutionvariable correlationeigen coor-dinate systembi-coordinate systems

周新宇、黄君洪、彭虎、王晖、王峰

展开 >

江西师范大学计算机信息工程学院 南昌 330022

吉林大学计算机科学与技术学院 长春 130012

九江学院计算机与大数据科学学院 江西 九江 332005

南昌工程学院信息工程学院 南昌 330022

武汉大学计算机学院 武汉 430072

展开 >

混合变量 差分进化 变量相关性 特征坐标系 双坐标系

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金江西省自然科学基金

6236602261966019621660276217325820232BAB202048

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(9)
  • 4