首页|意图感知的社交网络用户城外移动行为预测

意图感知的社交网络用户城外移动行为预测

扫码查看
基于社交网络用户生成的时空数据预测用户在城外的移动行为已成为城市协同管理的迫切需求.用户城外出行相对于城内移动而言属于"长尾"事件,导致用户在城外生成的签到数据极度稀疏,现有研究难以利用有限的跨城市签到数据建模用户城外出行偏好,进而准确预测用户在城外的移动行为.为此,本文提出一种意图感知的社交网络用户城外移动偏好建模框架TIEMPO.首先,为缓解数据稀疏性问题,通过随机游走从构建的城外地点网络中采样移动轨迹,利用无监督聚类发现特定数目的用户城外出行意图;其次,引入记忆网络从相似用户在城外的移动轨迹中进一步提炼出行意图;然后,基于迁移学习思想,将用户城内签到与城外出行意图进行交互建模,从而强化用户城外移动偏好表示;最后,融合用户城外移动偏好表示与地点隐含表示对用户访问城外地点的概率进行量化.本文基于多个跨城市签到数据集进行广泛的实验分析,结果表明TIEMPO能有效预测社交网络用户在城外的移动行为,预测准确性指标Acc@10相比基线模型体现出12%~15%的明显优势,排序可靠性指标NDCG@10相比基线模型则超出3%~5%,即使在冷启动预测场景下TIEMPO依然表现最优.
Intention-Aware Out-of-Town Mobility Prediction for Social Network Users
Predicting social network users'out-of-town mobility based on their generated spatio-temporal data has become an impending demand for urban collaborative management.User out-of-town mobility is indeed a"long tail"event compared with user mobility inside a city,resulting in extremely sparse check-in data generated by users in the out-of-town area.It is difficult for existing studies to utilize the limited cross-city check-in data to model users'out-of-town mobility preference,and afterwards accurately predict users'mobility outside the city.Toward these issues,in this article,a novel intention-aware framework called T1EMPO(short for intenTIon-awarE Mobility Preference mOdeling)for modeling user out-of-town mobility preference is proposed and implemented.Firstly,in order to alleviate the data sparsity problem,abundant trajectories are sampled from the constructed out-of-town location network via random walk,based on which a specific number of user intentions for out-of-town mobility can be discovered through unsupervised clustering.Secondly,the memory network is introduced to refine user intentions from similar users'out-of-town trajectories.Thirdly,following the idea of transfer learning,user check-ins inside a city and user intentions outside a city are interactively modeled to enhance user's out-of-town mobility preference representation.Finally,the probability of a user visiting an out-of-town location is quantified by integrating the user's out-of-town mobility preference representation and the location hidden representation.Extensive experiments based on multiple cross-city check-in datasets are conducted,and empirical results indicate that the proposed TIEMPO framework can effectively predict users'out-of-town mobility in terms of the visited locations,where the prediction accuracy metric Acc@10 shows a significant advantage of 12%-15%and the ranking reliability metric NDCG@10 achieves 3%-5%advantage compared with the baseline models.Even in cold-start prediction scenarios,TIEMPO framework still has the best performance.

mobility predictioncross-cityintention-awarepreference modelingknowledge transfersocial network

胥帅、李博涵、许建秋、曹玖新、傅晓明

展开 >

南京航空航天大学计算机科学与技术学院 南京 211106

计算机软件新技术国家重点实验室(南京大学) 南京 210023

东南大学网络空间安全学院 南京 211189

哥廷根大学计算机科学研究所 哥廷根37077德国

展开 >

移动行为预测 跨城市 意图感知 偏好建模 知识迁移 社交网络

国家自然科学基金青年项目国家自然科学基金联合基金项目江苏省自然科学基金中央高校基本科研业务费

62302213U23A20296BK20210280NS2022089

2024

计算机学报
中国计算机学会 中国科学院计算技术研究所

计算机学报

CSTPCD北大核心
影响因子:3.18
ISSN:0254-4164
年,卷(期):2024.47(11)