首页|K-Means聚类算法和人工鱼群算法应用于图像分割技术

K-Means聚类算法和人工鱼群算法应用于图像分割技术

扫码查看
提出一种基于K-Means聚类的人工鱼群算法,该算法利用人工鱼群算法鲁棒性较强且不易陷入局部最优值的特点,动态的确定了聚类的数目和中心,解决了K-Means聚类初始点选择不稳定的缺陷,在此两种算法融合的基础上进行图像分割处理,经试验证明该算法效果理想.
K-Means Clustering Algorithm and Artificial Fish Swarm Algorithm Applied in Image Segmentation Technology
The paper presents an artificial fish swarm algorithm based on K-Means clustering.The algorithm uses the feature of having artificial fish swarm algorithm's strong robustness and being not easy to fall into local optimum value,and hence dynamically determines the number of clusters and center,overcoming the defects of K-Means clustering initial point selected unstable.The image segmentation is processed based on the fusion of two algorithms.The test proves the algorithm is ideal.

image segmentationK-Means clustering algorithmartificial fish swarm algorithm

楚晓丽

展开 >

广东农工商职业技术学院,广州 510507

图像分割技术 K-Means聚类算法 人工鱼群算法

2013

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2013.22(4)
  • 7
  • 5