首页|基于Delaunay三角网的克里金并行算法优化

基于Delaunay三角网的克里金并行算法优化

扫码查看
当采样点数据量较大时,可以采用Delaunay三角剖分建立三角网来使用局部邻域采样点进行克里金插值.但是该算法需要对每个插值点拟合半变异函数,插值点规模大时造成巨大开销.为此,本文提出了一种以三角形为单位拟合半变异函数的克里金插值方法,采用CPU-GPU负载均衡将部分计算优化,充分考虑不均匀样本对克里金插值效果的影响.结果表明,本文算法能够保证不均匀样本集的插值效果,提升了计算性能且能够保证较高的精度.
Optimization of Kriging Parallel Algorithm Based on Delaunay Triangulation Network
Under a large data amount of sampling points,Delaunay triangulation can be adopted to establish a triangulation network and then employ local neighborhood sampling points for Kriging interpolation.However,this algorithm requires fitting a semi-variogram to each interpolation point,which incurs significant overhead in the condition of a large interpolation point scale.Therefore,this study proposes a Kriging interpolation method that fits the semi-variogram on a triangular basis.Additionally,it utilizes CPU-GPU load balancing to optimize some calculations and fully considers the influence of non-uniform samples on the Kriging interpolation effect.The results show that the proposed algorithm can ensure the interpolation effect of non-uniform sample sets,improve computational performance,and ensure high accuracy.

load balancingKriging interpolationneighborhood searchparallel computing

陈国军、李子祥、付云鹏、李震烁

展开 >

中国石油大学(华东)计算科学与技术学院,青岛 266580

负载均衡 克里金插值 邻域搜索 并行计算

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(1)
  • 6