首页|深度学习在糖尿病视网膜病变分级中的应用

深度学习在糖尿病视网膜病变分级中的应用

扫码查看
近年来,糖尿病视网膜病变(diabetic retinopathy,DR)成为全球失明人口增加的主要原因,早期的DR严重程度分级对防止DR患者视力丧失尤为重要.由于糖尿病患者数量的逐年上升,DR分级的需求量也不断增加,然而传统的人工分级不能满足日益增长的需求,且人工分级耗时费力.深度学习技术的发展,为DR检测和分级提供了高效率且更可靠的手段.虽然,目前的DR二元检测已经取得十分好的效果,然而由于糖尿病视网膜病变的复杂性和病变程度之间的差距细微,DR严重程度分级仍然是一个具有挑战性的问题.本文对近年来涌现的DR分级方法进行了研究和总结:介绍了基于 VGG、InceptionNet、ResNet、EfficientNet、DenseNet、CapsNet 模型的 6 种深度学习分级方法;并介绍了基于多网络融合的DR分级方法;最后对基于深度学习的DR分级方法的研究趋势进行总结和展望.
Application of Deep Learning in Grading of Diabetic Retinopathy
In recent years,diabetic retinopathy(DR)has become the main reason for the global blind population increase.The early DR severity classification is particularly important to prevent vision loss in DR patients.As the number of diabetes patients grows year by year,the demand for DR grading is also rising.However,the traditional manual grading cannot meet the growing demands,and it is time-consuming and laborious.The development of deep learning technology provides a more efficient and reliable means for DR detection and grading.Although the current DR binary detection has yielded good results,DR severity grading is still challenging due to the slight differences between DR complexity and lesion degree.This work studies and summarizes DR grading methods in recent years.It introduces six deep learning classification methods based on VGG,InceptionNet,ResNet,EfficientNet,DenseNet,and CapsNet models.In addition,the study presents DR grading methods based on multi-network fusion.Finally,summary and prospect are provided for the research trends of DR grading methods based on deep learning.

diabetic retinopathydeep learningconvolutional neural network(CNN)multi-network fusionmulti-label classification

张志强、赵可辉、牛惠芳、张子宇、周连田

展开 >

山东中医药大学智能与信息工程学院,济南 250355

山东中医药大学第二附属医院特检科,济南 250002

山东省药品不良反应监测中心,济南 250014

菏泽市中医医院碎石科,菏泽 274035

展开 >

糖尿病视网膜病变 深度学习 卷积神经网络 多网络融合 多标签分类

中国药品监管科学研究行动计划重点项目(第二批)

2022SDADRKY06

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(1)
  • 11