首页|基于Wasserstein距离与生成对抗网络的高光谱图像分类

基于Wasserstein距离与生成对抗网络的高光谱图像分类

扫码查看
近年来,基于生成对抗网络的高光谱图像分类方法取得了很大进展.它们虽可以缓解训练样本数量有限的问题,但是容易受到训练数据不平衡的影响,并且存在模式崩溃问题.针对这些问题,提出了一种用于高光谱图像分类的SPCA-AD-WGAN模型.首先,为了解决训练数据不平衡导致分类精度降低的问题,添加了单独的分类器,与判别器分开训练.其次,将Wasserstein距离引入网络,以缓解GAN模型崩溃的问题;在两个HSI数据集上的实验结果表明,SPCA-AD-WGAN具有更好的分类性能.
Hyperspectral Image Classification Based on Wasserstein Distance and GAN
In recent years,significant progress has been made in the classification of hyperspectral images(HSI)based on generative adversarial nets(GAN).Although they can alleviate the problem of limited training sample size,they are easily affected by imbalanced training data and have the problem of pattern collapse.To this end,a SPCA-AD-WGAN model for HSI classification is proposed.Firstly,to address the issue of reduced classification accuracy caused by imbalanced training data,the study adds a separate classifier and trains it separately from the discriminator.Secondly,it introduces the Wasserstein distance into the network to alleviate the GAN model collapse.The experimental results on two HSI datasets indicate that SPCA-AD-WGAN has better classification performance.

hyperspectral imagegenerative adversarial network(GAN)classification

晏远翔、曹国、张友强

展开 >

南京理工大学计算机科学与工程学院,南京 210094

南京邮电大学物联网学院,南京 210003

高光谱图像 生成对抗网络 分类

国家自然科学基金江苏省自然科学基金

62201282BK20231456

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(2)
  • 5