首页|基于轻量语义分割网络的遥感土地覆盖分类

基于轻量语义分割网络的遥感土地覆盖分类

扫码查看
高分辨率遥感图像有丰富的空间特征,针对遥感土地覆盖方法中模型复杂,边界模糊和多尺度分割等问题,提出了一种基于边界与多尺度信息的轻量化语义分割网络.首先,使用轻量化的MobileNetV3 分类器,采用深度可分离卷积来减少计算量.其次,使用自顶向下和自底向上的特征金字塔结构来进行多尺度分割.接着,设计了一个边界增强模块,为分割任务提供丰富的边界细节信息.然后,设计了一个特征融合模块,融合边界与多尺度语义特征.最后,使用交叉熵损失函数和Dice损失函数来处理样本不平衡的问题.在WHDLD数据集的平均交并比达到了59.64%,总体精度达到了 87.68%.在DeepGlobe数据集的平均交并比达到了 70.42%,总体精度达到了 88.81%.实验结果表明,该模型能快速有效地实现遥感图像土地覆盖分类.
Remote Sensing Land Cover Classification Based on Lightweight Semantic Segmentation Network
High-resolution remote sensing images have rich spatial features.To solve the problems of complex models,blurred boundaries,and multi-scale segmentation in remote sensing land cover methods,this study proposes a lightweight semantic segmentation network based on boundary and multi-scale information.First,the method uses a lightweight MobileNetV3 classifier and depthwise separable convolutions to reduce computation.Second,the method adopts top-down and bottom-up feature pyramid structures for multi-scale segmentation.Next,a boundary enhancement module is designed to provide rich boundary detail information for the segmentation task.Then,the method designs a feature fusion module to fuse boundary and multi-scale semantic features.Finally,the method applies cross-entropy and Dice loss functions to deal with the sample imbalance.The mean intersection over union of the WHDLD dataset reaches 59.64%,and the overall accuracy reaches 87.68%.The mean intersection over union of the DeepGlobe dataset reaches 70.42%,and the overall accuracy reaches 88.81%.The experimental results show that the model can quickly and effectively realize the land cover classification of remote sensing images.

high-resolution remote sensing imageland cover classificationlightweight semantic segmentationmultiscaleborder enhancementconvolutional neural network(CNN)

朱婉玲、贾渊

展开 >

西南科技大学计算机科学与技术学院,绵阳 621010

高分辨率遥感图像 土地覆盖分类 轻量化语义分割 多尺度 边界增强 卷积神经网络

国家自然科学基金

NSFC62076209

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(2)
  • 1
  • 2