首页|基于改进YOLOv7的PDC钻头复合片检测

基于改进YOLOv7的PDC钻头复合片检测

扫码查看
复合片是PDC钻头的核心切削单元,复合片自动检测技术是复合片自动修复技术的基础.本文提出了一种基于改进YOLOv7 的PDC钻头复合片检测方法,在YOLOv7 的基础上,用深度可分离卷积替换了常规卷积,减少了参数量和运算成本;引入了SimAM注意力机制,不需要额外的参数便可以从神经元中推导出 3D注意力权重,而且还能提高卷积神经网络的表达能力;用SPPFCSPC替换了SPPCSPC,在保证感受野不变的同时获得了速度的提升;采用K-means++算法聚类先验框,使用启发式算法定位出缺损的复合片.实验结果表明,本文算法较原YOLOv7 模型mAP提高了 2.75%,参数量减少了约 80%,推理速度提高了 9.12 f/s,且较其他算法也有较大优势,可实现复合片检测的工业应用.
PDC Drill Bit Composite Piece Detection Based on Improved YOLOv7
The composite piece is the core cutting unit of the PDC drill bit,and its automatic detection technology is the basis of the automatic repair technology of the composite piece.This paper proposes a PDC drill bit composite piece detection method based on the improved YOLOv7.Based on YOLOv7,the conventional convolution is replaced with depth-separable convolution,which reduces the amount of parameters and computing cost.As the SimAM attention mechanism is introduced,the method can derive 3D attention weights from neurons without additional parameters and also improve the expressive ability of convolutional neural networks.SPPCSPC is replaced with SPPFCSPC,which improves the speed while ensuring that the receptive field remains unchanged.The priori frames of K-means++ algorithm clusters are adopted and a heuristic algorithm is applied to locate defective composite pieces.Experimental results show that compared with the original YOLOv7 model,the mAP of the proposed algorithm is increased by 2.75%,the number of parameters reduced by about 80%,and the inference speed increased by 9.12 f/s.It also has greater advantages than other algorithms and can realize industrial applications of composite piece detection.

PDC bit composite pieceYOLOv7depth separable convolutionSimAM attention mechanismSPPFCSPCK-means++

陈琳国、熊凌、代啟亮、王冬梅、李姝凡

展开 >

武汉科技大学信息科学与工程学院,武汉 430080

中石化江钻石油机械有限公司,武汉 430080

PDC钻头复合片 YOLOv7 深度可分离卷积 SimAM注意力机制 SPPFCSPC K-means++

国家自然科学基金湖北省重点研发计划

621732612020BAB021

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(2)
  • 1