首页|多策略融合改进的蜣螂优化算法

多策略融合改进的蜣螂优化算法

扫码查看
针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足,提出了一种融合多策略的改进蜣螂优化算法(MSDBO).首先,引入社会学习策略引导推球蜣螂进行位置更新,提高了算法全局探索能力,避免算法陷入局部最优;其次,提出一种方向跟随策略,建立起小偷蜣螂与推球蜣螂个体间的交互,提高了寻优精度;最后,引入环境感知概率,引导小偷蜣螂合理采用方向跟随策略,兼顾了性能与时间消耗.在 12 个基准测试函数上进行求解分析,并与其他优化算法进行对比,证明了MSDBO的寻优性能明显优于对比算法,在压力容器设计优化问题上的结果验证了MSDBO求解实际工程约束优化问题的有效性.
Improved Dung Beetle Optimization Algorithm with Multi-strategy
An improved dung beetle optimization algorithm integrating multiple strategies(MSDBO)is proposed to solve the problems of weak global exploration ability,low convergence accuracy,and easy capture by local optimum solution.Firstly,this study introduces the social learning strategy to guide the dung beetle to update its position,which improves the global exploration ability of the algorithm and avoids the algorithm falling into local optimal.Secondly,the study proposes a direction-following strategy to establish the interaction between the thief and the ball-rolling dung beetle,which improves the accuracy of optimization.Finally,taking into account the performance and time consumption,it introduces environment-aware probability to guide the thief to adopt the direction-following strategy reasonably.Several optimization algorithms are selected and compared with MSDBO.By solving and analyzing 12 benchmark test functions,it is proved that the optimization performance of MSDBO is significantly better than that of the comparison algorithm.The results of pressure vessel design optimization verify the effectiveness of MSDBO in solving practical engineering constraint optimization problems.

dung beetle optimization(DBO)algorithmsocial learningdirection followingenvironment perception probabilitybenchmark test functionpressure vessel design

王乐遥、顾磊

展开 >

南京邮电大学计算机学院,南京 210023

蜣螂优化算法 社会学习 方向跟随 环境感知概率 基准测试函数 压力容器设计

国家自然科学基金

61972210

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(2)
  • 1
  • 2