首页|基于Efficient-YOLO的轻量化轴承缺陷检测

基于Efficient-YOLO的轻量化轴承缺陷检测

扫码查看
针对现有深度模型在工业轴承外观缺陷检测领域,存在模型参数量大、特征融合不充分以及对小目标检测精度低等问题,提出了一种轻量化自适应特征融合检测网络(Efficient-YOLO).首先,该网络采用嵌入CBAM注意力机制的EfficientNetV2 结构进行基本特征提取,便于确保模型精度同时显著优化模型参数量;其次,设计了一种自适应特征融合网络(CBAM-BiFPN),用来增加网络对有效特征信息的提取;接着,在下游特征融合网络引入Swin Transformer机制,同时配合上游网络引入的Ghost卷积,大幅度提高模型对轴承外观缺陷的全局感知能力;最后,在推理阶段运用改进的非极大值抑制方法(Soft-CIoU-NMS),加入距离有关的权重评价因素,减少了重叠框的漏检.实验结果表明:与现有主流检测模型相比,此方法在轴承表面缺陷数据集上,mAP达到了 90.1%,参数量降低至 1.99M,计算量为7 GFLOPs,对轴承缺陷小目标识别率显著提升,满足工业现场轴承外观缺陷检测需求.
Lightweight Bearing Defect Detection Based on Efficient-YOLO
Since the existing deep model faces many problems such as a large number of model parameters,insufficient feature fusion,and low detection accuracy for small targets in the field of industrial bearing appearance defect detection,a lightweight adaptive feature fusion detection network(Efficient-YOLO)is proposed.First of all,the network uses the EfficientNetV2 structure embedded in the CBAM attention mechanism for basic feature extraction to ensure model accuracy and significantly optimize the model parameters.Secondly,an adaptive feature fusion network(CBAM-BiFPN)is designed to strengthen the network's extraction of effective feature information.Then,the Swin Transformer mechanism is introduced in the downstream feature fusion network,and the Ghost convolution introduced by the upstream network is used to greatly improve the model's global perception of bearing appearance defects.Finally,the improved non-maximum suppression method(Soft-CIoU-NMS)is applied in the inference phase,with distance-related weight evaluation factors added,so as to reduce missed detection of overlapping frames.The experimental results show that compared with the existing mainstream detection models,the method has a mAP of 90.1%on the bearing surface defect dataset.The number of parameters is reduced to 1.99M.and the calculation amount is 7 GFLOPs.The recognition rate of small targets with bearing defects is significantly improved,which meets the needs of industrial bearing appearance defect detection.

bearing defect detectiondeep learningEfficientNetV2YOLOv5feature fusion

娄瑶迪、岳俊峰、周迪斌、刘文浩

展开 >

杭州师范大学信息科学与技术学院,杭州 311121

轴承缺陷检测 深度学习 EfficientNetV2 YOLOv5 特征融合

国家自然科学基金联合重点项目

U21A20466

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(2)
  • 25