首页|基于图偏差网络的外部自编码器时间序列异常检测

基于图偏差网络的外部自编码器时间序列异常检测

扫码查看
随着互联网和连接技术的提高,传感器产生的数据逐渐趋于复杂化.深度学习方法在处理高维数据的异常检测方面取得较好的进展,图偏差网络(graph deviation network,GDN)学习传感器节点之间关系来预测异常,并取得一定的效果.针对图偏差网络模型缺少对时间依赖性以及异常数据不稳定的处理,提出了基于图偏差网络的外部自编码器模型(graph deviation network-based external attention autoencoder,AEEA-GDN)深度提取表征,此外在模型训练时引入自适应学习机制,帮助网络更好地适应异常数据的变化.在3个现实收集传感器数据集上的实验结果表明,基于图偏差网络的外部自编码器模型比基线方法更准确地检测异常,且总体性能更优.
Time Series Anomaly Detection With External Autoencoder Based on Graph Deviation Network
With the improvement of the Internet and connection technology,the data generated by sensors is gradually becoming complex.Deep learning methods have made great progress in anomaly detection of high-dimensional data.The graph deviation network(GDN)learns the relationship between sensor nodes to predict anomalies and has achieved certain results.Since the GDN model fails to deal with time dependence and instability of abnormal data,an external attention autoencoder based on GDN(AEEA-GDN)is proposed to deeply extract features.In addition,an adaptive learning mechanism is introduced during model training to help the network better adapt to changes in abnormal data.Experimental results on three real-world collected sensor datasets show that the AEEA-GDN model can more accurately detect anomalies than baseline methods and has better overall performance.

anomaly detectiongraph deviation network(GDN)autoencoderexternal attention mechanismadaptive learning

张孚容、顾磊

展开 >

南京邮电大学计算机学院、软件学院、网络空间安全学院,南京 210023

异常检测 图偏差网络 自编码器 外部注意力机制 自适应学习

国家自然科学基金

61972210

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(3)
  • 29