首页|基于S-Transformer的多模态船舶轨迹预测

基于S-Transformer的多模态船舶轨迹预测

扫码查看
船舶轨迹预测是实现船舶智能航行的前提与基础.目前,针对船舶轨迹预测的研究大多仅依赖于船舶自动识别系统(AIS)历史数据,而未利用到船舶上其他传感器信息.于是本文提出了一种多模态轨迹预测模型——S-Transformer.在该网络中,电子海图中的海水/陆地被分割作为辅助训练目标与真实舟山港AIS数据加以综合从而对模型进行训练,并对船舶未来航行轨迹进行预测;其中,本文还引入segment recurrence来捕获AIS数据的长期依赖关系.实验结果表明,S-Transformer在不同的船舶行驶情况中都有优秀的预测结果,并优于相关预测任务的单模态基准模型.
Multimodal Ship Trajectory Prediction Based on S-Transformer
Ship trajectory prediction is the premise and basis of realizing intelligent ship navigation.At present,most studies on ship trajectory prediction only rely on historical data of the automatic identification system(AIS),without using other sensor information on the ship.This study proposes a multi-modal trajectory prediction model S-Transformer.In this network,the seawater/land in the electronic chart is segmented as an auxiliary training target and integrated with the real Zhoushan port AIS data to train the model.In addition,the future ship sailing trajectory is predicted.The study also introduces Segment Recurrence to capture long-term dependencies of AIS data.The experimental results show that the S-Transformer has excellent prediction results in different ship-traveling situations and outperforms the unimodal benchmark model for related prediction tasks.

trajectory predictionmultimodalTransformersemantic segmentation

柯研、陈姚节

展开 >

武汉科技大学计算机科学与技术学院,武汉 430081

湖北省智能信息处理与实时工业系统重点实验室,武汉 430081

轨迹预测 多模态 Transformer 语义分割

装备发展部"慧眼行动"项目

62602010214

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(3)
  • 21