首页|融合社交利益与图注意力网络的同伴互评分数预测

融合社交利益与图注意力网络的同伴互评分数预测

扫码查看
在同伴互评过程中,评估者会因为战略性评估而导致评估分数不准确.本文考虑了评估者之间的社交利益关系,提出了一种融合社交利益与图注意力网络的同伴互评分数预测方法GAT-SIROAN.该方法由表示评估者与解决方案关系的加权网络SIROAN以及用来预测同伴互评分数的图注意力网络GAT构成.在SIROAN中使用ITSA方法定义了评估者的两个特征:自我评分能力和同伴评分能力,并通过比较这两个特征来获取评估者之间的社交利益因子和关系.在分数预测环节,为了考虑每个节点的重要性,使用自注意力机制来计算节点的注意力系数,以此来提高预测能力.采用最小化其均方根误差来学习网络的参数,从而获取更准确的同伴互评预测分数.GAT-SIROAN在真实数据集上与平均值、中位数、PeerRank、RankwithTA以及GCN-SOAN这 5 个基线方法进行了对比实验,结果表明GAT-SIROAN在RMSE指标上均优于基线方法.
Prediction of Peer Evaluation Scores by Integrating Social Benefits and Graph Attention Network
During peer evaluation,evaluators may give inaccurate evaluation scores as a result of strategic evaluation.Taking into account the evaluators'social interest(SI)relations,this study proposes a prediction method named graph attention network-social interest relation-oriented attention network(GAT-SIROAN)that integrates SI and the GAT.This method consists of a weighted network SIROAN that represents the evaluators'relations with the solutions and a GAT that is used to predict peer evaluation scores.In the SIROAN,the interrupted time-series analysis(ITSA)method is applied to define the evaluators'two characteristics:the self-evaluation ability and the peer evaluation ability,and these two characteristics are compared to obtain the SI factors and relations among the evaluators.In the score prediction stage,considering the importance of each node,this study uses a self-attention mechanism to calculate the attention coefficients at the nodes,thereby improving the prediction ability.Network parameters are learned by minimizing the root mean square error(RMSE)to obtain more accurate predicted peer evaluation scores.The GAT-SIROAN method is compared experimentally with five baseline methods,namely,the mean,median,PeerRank,RankwithTA,and GCN-SOAN methods,on real datasets.The results show that the GAT-SIROAN method outperforms all the above baseline methods in the RMSE.

peer evaluationsocial benefitweighted networkgraph attention network(GAT)score prediction

杨群、訾玲玲、丛鑫

展开 >

重庆师范大学计算机与信息科学学院,重庆 401331

同伴互评 社交利益 加权网络 图注意力网络 分数预测

重庆市教育科学规划课题重点项目重庆师范大学博士启动基金人才引进项目重庆师范大学博士启动基金人才引进项目

K22YE20509821XLB03021XLB029

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(5)
  • 28