首页|基于SimCSE框架融合预训练模型层级特征的文本匹配

基于SimCSE框架融合预训练模型层级特征的文本匹配

扫码查看
SimCSE框架仅使用分类令牌[CLS]token作为文本向量,同时忽略基座模型内层级信息,导致对基座模型输出语义特征提取不充分.本文基于SimCSE框架提出一种融合预训练模型层级特征方法SimCSE-HFF(SimCSE with hierarchical feature fusion,SimCSE-HFF).SimCSE-HFF基于双路并行网络,使用短路径和长路径强化特征学习,短路径使用卷积神经网络学习文本局部特征并进行降维,长路径使用双向门控循环神经网络学习深度语义信息,同时在长路径中利用自编码器融合基座模型内部其他层特征,解决模型对输出特征提取不充分的问题.在STS-B的中文与英文数据集上,SimCSE-HFF方法效果在语义相似度Spearman和Pearson相关性指标上优于传统方法,在不同预训练模型上均得到提升;在下游任务检索问答上也优于SimCSE框架,具有更优秀的通用性.
Text Matching Based on SimCSE Framework Fused with Pre-trained Model Internal Hierarchical Features
The simple contrastive learning of sentence embedding(SimCSE)framework only uses the classification[CLS]tokens as text vectors,and it also neglects the hierarchical information within the base model,which results in insufficient extraction of semantic features from the base model output.Based on the SimCSE framework,this study proposes a method that fuses hierarchical features of pre-trained models,SimCSE with hierarchical feature fusion(SimCSE-HFF).SimCSE-HFF is based on a dual-path parallel network,using short and long paths to strengthen feature learning.The short path uses a convolutional neural network to learn local text features and perform dimensionality reduction,while the long path uses a bidirectional gated recurrent neural network to learn deep semantic information.Additionally,in the long path,an autoencoder is used to fuse features from other layers within the base model,solving the problem of insufficient extraction of output features by the model.On the Chinese and English datasets of spring tools suite-bundle(STS-B),the SimCSE-HFF method outperforms traditional methods in terms of semantic similarity Spearman and Pearson correlation metrics,showing improvements on different pre-trained models.Additionally,it also outperforms the SimCSE framework in downstream task retrieval-based question answering,demonstrating better versatility.

text matchingSimCSEfeature fusionautoencoderparallel network

盛成城、陈进东、张健

展开 >

北京信息科技大学计算机学院,北京 100192

北京信息科技大学经济管理学院,北京 100192

智能决策与大数据应用北京市国际科研合作基地,北京 100192

文本匹配 SimCSE 特征融合 自编码器 并行网络

国家重点研发计划北京市属高等学校优秀青年人才培育计划国家自然科学基金面上项目

2019YFB1405303BPHR20220323372174018

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(7)