首页|融合多特征的骨签释文实体识别

融合多特征的骨签释文实体识别

扫码查看
构建适用于汉长安城骨签释文的命名实体识别模型,用来解决由于汉长安城骨签释文关键内容缺失,而导致无法对部分骨签释文进行分类的问题.本文将汉长安城骨签释文原始文本作为数据集,采用BIOE(begin,inside,outside,end)标注方法对释文实体进行数据标注,并提出融合字结构特征、字词结构特征的多特征融合网络模型(multi-feature fusion network,MFFN).该模型不仅考虑了单个字符的结构特征,还融合了字与词的结构特征,以增强模型对骨签释文的理解能力.实验结果表明,MFFN模型能够更好地识别汉长安城骨签释文的命名实体,实现骨签释文分类,优于现有NER模型,为历史学家和研究人员提供更加丰富和准确的数据支持.
Entity Recognition for Interpretation of Bone-sign Integrated with Multiple Features
This study constructs a named entity recognition(NER)model suitable for the bone-sign interpretations of Han Chang'an City to solve the problem of the inability to classify some bone-sign interpretations due to the lack of key content.The original text of the bone-sign interpretations of Han Chang'an City is used as the dataset,and the begin,inside,outside,end(BIOE)annotation method is utilized to annotate the bone-sign interpretation entities.A multi-feature fusion network(MFFN)model is proposed,which not only considers the structural features of individual characters but also integrates the structural features of character-word combinations to enhance the model's comprehension of the bone-sign interpretations.The experimental results demonstrate that the MFFN model can better identify the named entities of the bone-sign interpretations of Han Chang'an City and classify the bone-sign interpretations,outperforming existing NER models.This model provides historians and researchers with richer and more precise data support.

bone-signentity recognitionBIOE annotation methodmultiple features fusionclassification of interpretation

石雨梦、王慧琴、王展、刘瑞、王可

展开 >

西安建筑科技大学信息与控制工程学院,西安 710055

陕西省文物保护研究院,西安 710075

中国社会科学院考古研究所,北京 100101

骨签 实体识别 BIOE标注方法 多特征融合 释文分类

国家社科基金冷门绝学研究专项

20VJXT001

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(9)
  • 8