首页|基于Swin Transformer的遥感图像超分辨率重建

基于Swin Transformer的遥感图像超分辨率重建

扫码查看
由于遥感图像中的物体具有不确定性,同时不同图像之间的特征信息差异较大,导致现有超分辨率方法重建效果差,因此本文提出一种结合Swin Transformer和N-gram模型的NG-MAT模型来实现遥感图像超分辨率.首先,在原始Transformer计算自注意力的分支上并联多注意力模块,用于提取全局特征信息来激活更多像素.其次,将自然语言处理领域的N-gram模型应用到图像处理领域,用三元N-gram模型来加强窗口之间的信息交互.本文提出的方法在所选取的数据集上,峰值信噪比在放大因子为 2、3、4 时达到了 34.68 dB、31.03 dB、28.99 dB,结构相似度在放大因子为 2、3、4 时达到了 0.9266、0.8444、0.7734,实验结果表明,本文提出的方法各个指标都优于其他同类方法.
Super-resolution Reconstruction of Remote Sensing Image Based on Swin Transformer
Due to the uncertainty of objects in remote sensing images and significant differences in feature information between different images,existing super-resolution methods yield poor reconstruction results.Therefore,this study proposes an NG-MAT model that combines the Swin Transformer and the N-gram model to achieve super-resolution of remote sensing images.Firstly,multiple attention modules are connected in parallel on the branch of the original Transformer to extract global feature information for activating more pixels.Secondly,the N-gram model from natural language processing is applied to the field of image processing,utilizing a trigram N-gram model to enhance information interaction between windows.The proposed method achieves peak signal-to-noise ratios of 34.68 dB,31.03 dB,and 28.99 dB at amplification factors of 2,3,and 4,respectively,and structural similarity indices of 0.926 6,0.844 4,and 0.773 4 at the same amplification factors on the selected dataset.Experimental results demonstrate that the proposed method outperforms other similar methods in various metrics.

Swin Transformersuper-resolutionN-gramremote sensing image

孔锐、冉友红

展开 >

暨南大学智能科学与工程学院,珠海 519070

Swin Transformer 超分辨率 N-gram 遥感图像

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(9)