首页|基于知识图谱和预训练语言模型的儿童疫苗接种风险预测

基于知识图谱和预训练语言模型的儿童疫苗接种风险预测

扫码查看
基层医疗机构的医生缺少患病儿童疫苗接种风险的判断能力,通过学习高水平医院医生的经验来研发儿童疫苗接种风险预测模型,从而帮助基层医疗机构医生快速筛查高风险患儿,是一种可行的方案.本文提出了一种智能化的基于知识图谱的疫苗接种建议推荐方法.首先,提出了一种基于预训练语言模型的医学命名实体识别方法ELECTRA-BiGRU-CRF,用于门诊电子病历命名实体抽取.其次,设计疫苗接种本体,定义关系及属性,基于Neo4j构建了中文儿童疫苗接种知识图谱.最后,基于构建的中文疫苗接种知识图谱,提出了一种基于预训练语言模型进行显著性类别指导的疫苗接种建议分类推荐方法.实验结果表明,本文研究方法可以为医生提供辅助诊断,对于患病儿童能否接种疫苗提供决策支持.
Risk Prediction of Child Vaccination Based on Knowledge Graph and Pre-trained Language Model
Primary healthcare providers lack the ability to assess the risk of vaccination for children with certain illnesses.It is a viable solution to developing a risk prediction model for pediatric vaccination,by leveraging the experience of healthcare professionals in tertiary hospitals,to assist primary healthcare providers in swiftly identifying high-risk pediatric patients.This study proposes an intelligent method for vaccine recommendations based on a knowledge graph.Firstly,a method for medical named entity recognition called ELECTRA-BiGRU-CRF,based on pre-trained language models,is proposed for named entity extraction from outpatient electronic medical records.Secondly,a vaccination ontology is designed,with relationships and attributes defined,to construct a Chinese childhood vaccination knowledge graph based on Neo4j.Finally,a method for vaccine recommendations guided by significant categories using pre-trained language models is proposed based on the constructed knowledge graph.Experimental results indicate that the proposed methods can provide diagnostic assistance to physicians and offer support for deciding whether vaccines can be administered to children with certain illnesses.

Chinese electronic medical recordpre-trained language model(PLM)knowledge graphnamed entity recognition(NER)vaccination recommendation

吴英飞、刘蓉、李明燕、季钗、崔朝健

展开 >

杭州师范大学信息科学与技术学院,杭州 311121

浙江大学医学院附属儿童医院儿童保健科,杭州 310003

国家儿童健康与疾病临床医学研究中心,杭州 310003

中文电子病历 预训练语言模型 知识图谱 命名实体识别 疫苗接种建议

浙江省自然科学基金

TGY24H260008

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(10)