首页|融合多注意力的舌象证候分类

融合多注意力的舌象证候分类

扫码查看
智能舌诊在协助医生诊断病情方面具有重要意义.当前,智能舌诊主要集中在单一舌象特征的预测分类,难以在诊断过程中提供实质性的帮助.为弥补这一不足,从舌象证候层面进行精准的预测分类研究,协助医生诊断病情.使用TUNet对舌体进行分割,并提出融合多注意力机制的平行残差网络PMANet用于舌象证候分类.在像素准确率、平均交并比和Dice系数 3 个评价指标上,TUNet分别达到 99.7%、98.4%、99.2%,相较于基线U-Net,提高了3.2%、9.0%、4.8%.在舌象证候分类研究中,PMANet的参数总量为 12.34M,略高于对比实验中的EfficientNet,总浮点计算数为 1.021G,远低于所有对比网络.在参数量和浮点计算数更少的情况下,取得了 95.7%的分类准确率,实现了精度、参数量和浮点运算数之间的平衡.这一方法为智能舌诊研究提供了重要支持,有望推进中医舌诊现代化进程.
Tongue Image Syndrome Classification Integrated with Multiple Attention
Intelligent tongue diagnosis is of great significance in assisting doctors in medical treatment.At present,intelligent tongue diagnosis is mainly focused on the prediction and classification of single tongue image features,making it difficult to provide substantial help in the diagnostic process.To make up for this deficiency,research of accurate prediction and classification is carried out from the level of tongue image syndrome to assist doctors in diagnosing diseases.The TUNet is used to segment the tongue,and a parallel residual network PMANet integrated with the multi-attention mechanism is proposed to classify the syndrome of tongue image.the pixel accuracy(PA),mean intersection over union(MIoU)and Dice coefficient of TUNet reach 99.7%,98.4%,and 99.2%,respectively,improved by 3.2%,9.0%,and 4.8%compared with the baseline U-Net.In the research of tongue image syndrome classification,PMA's total amount of parameters is 12.34M,slightly higher than that of EfficientNet,and its total amount of floating-point calculations is 1.021G,significantly lower than all compared networks.Under the background of a lower amount of both parameters and floating-point calculations,the classification accuracy of PMANet reaches 95.7%,achieving a balance between precision,parameter amount,and floating-point calculations amount.This method provides support for the research of intelligent tongue diagnosis and is expected to promote the modernization of TCM tongue diagnosis.

tongue diagnosistongue segmentationclassification of tongue image syndromedeep learningintelligent tongue diagnosis

宁宏宇、张魁星、薛丹、江梅

展开 >

山东中医药大学智能与信息工程学院,济南 250355

山东第一医科大学第一附属医院(山东省千佛山医院),济南 250013

舌诊 舌体分割 舌象证候分类 深度学习 舌诊智能化

山东省自然科学基金山东省中医药科技项目青岛市科技惠民示范专项

ZR2020KF013Q-202205223-2-8-smjk-2-nsh

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(10)