首页|基于变形卷积和多重注意力的零售商品检测

基于变形卷积和多重注意力的零售商品检测

扫码查看
针对零售商品旋转和变形导致难以准确提取全局特征及无关特征干扰的问题,提出一种基于改进YOLOv8s的零售商品检测算法.首先,利用归一化可变形卷积替代部分标准卷积,通过充分捕获长距离依赖关系以及突出通道关键特征,增强对全局特征的提取能力;其次,使用改进的动态检测头,使用基于空间感知、尺度感知和任务感知的多重注意力机制来捕获更具区分性的商品局部特征,以抑制无关特征干扰;最后,采用InnerEIoU损失函数替换CIoU,以降低商品漏检率.实验结果表明,所提算法在RPC零售商品数据集上的mAP@0.5:0.95 达到 93.3%,较原始算法提升了 1.5%,并优于其他主流检测算法;同时模型参数量和计算量分别下降了 10.0%和 6.5%,能够在存储和计算资源受限的实际场景中,准确地进行零售商品检测.
Retail Commodity Detection Based on Deformable Convolution and Multiple Attention
A retail commodity detection algorithm based on improved YOLOv8s is proposed in response to the difficulty in accurately extracting global features and irrelevant feature interference caused by retail commodity rotation and deformation.Firstly,using normalized deformable convolutions to replace some standard convolutions enhances the ability to extract global features by fully capturing long-range dependencies and highlighting key channel features.Secondly,using an improved dynamic detection head and a multi-attention mechanism based on spatial perception,scale perception,and task perception captures more discriminative local features of goods to suppress irrelevant feature interference.Finally,the InnerEIoU loss function is used to replace CIoU to reduce the missed detection rate of goods.Experimental results show that the proposed algorithm achieves an mAP@0.5:0.95 of 93.3%on the RPC retail commodity dataset,which is 1.5%higher than the original algorithm and better than other mainstream detection algorithms.At the same time,the number of model parameters and the amount of computation decrease by 10.0%and 6.5%respectively,enabling accurate retail commodity detection in practical scenarios with limited storage and computing resources.

retail commodity detectionYOLOv8sdeformable convolutionlightweightattention mechanism

王添、刘立波

展开 >

宁夏大学 信息工程学院,银川 750021

宁夏"东数西算"人工智能与信息安全重点实验室,银川 750021

零售商品检测 YOLOv8s 可变形卷积 轻量级 注意力机制

国家自然科学基金宁夏科技创新领军人才计划

622620532022GKLRLX03

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(11)