首页|有监督多视图对比学习和两阶段双线性特征融合的人脸活体检测

有监督多视图对比学习和两阶段双线性特征融合的人脸活体检测

扫码查看
本文提出了一种将多尺度频率特征和生成对抗网络(GAN)训练的深度图特征融合的多分支网络.具体地,高频特征中的边缘纹理信息有利于捕捉摩尔纹.低频特征对色彩失真更为敏感.作为辅助信息,深度图在视觉层面上比 RGB 图像更具辨别力.有监督多视图对比学习的应用进一步增强了多视图特征的学习.此外,还提出了两阶段双线性特征融合方法,以融合来自不同视图的多分支特征.为了评估该模型,我们在 4 个广泛使用的公共数据集(CASIA-FASD、Replay-Attack、MSU-MFSD 和 OULU-NPU)上进行了消融实验,特征融合对比实验,单一数据集实验和跨数据集实验.跨数据集实验结果表明,本文模型在 4 种测试协议上的平均HTER比只使用RGB图转换为深度图(DFA)的方法好5%(20.3%减至15.0%).
Face Anti-spoofing Based on Supervised Multi-view Contrastive Learning and Two-stage Bilinear Feature Fusion
In this study,a multi-branch network that integrates multi-scale frequency features and depth map features trained by generative adversarial network(GAN)is proposed.Specifically,edge texture information in high-frequency features is beneficial to capturing moire patterns.Low-frequency features are more sensitive to color distortion.Depth maps are more discriminative than RGB images from the visual level as auxiliary information.Supervised multi-view contrastive learning is employed to further enhance multi-view feature learning.Moreover,a two-stage bilinear feature fusion method is proposed to effectively integrate multi-branch features from different views.To evaluate the model,ablation experiments,feature fusion comparison experiments,intra-set experiments and inter-set experiments are conducted on four widely used public datasets,namely CASIA-FASD,Replay-Attack,MSU-MFSD,and OULU-NPU.The experiment result shows that the average HTER of the proposed model on the four tested protocols is 5%(20.3%to 15.0%)better than the DFA method in the inter-set evaluation.

face anti-spoofing(FAS)contrastive learningfeature fusiongenerative adversarial network(GAN)deep learning

孙文赟、李进、金忠

展开 >

南京信息工程大学 人工智能学院,南京 210044

南京信息工程大学 计算机学院、网络空间安全学院,南京 210044

南京理工大学 计算机科学与工程学院,南京 210094

人脸活体检测 对比学习 特征融合 生成对抗网络 深度学习

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(11)