首页|改进YOLOv8的水下目标检测

改进YOLOv8的水下目标检测

扫码查看
针对水下目标检测中的尺度不一、重叠遮挡目标的漏检问题,提出了一种改进的YOLOv8 水下目标检测算法.首先,在主干网络中引入可变形卷积(deformable convolution network,DCN),通过卷积核自适应形变的机制,提高模型对重叠遮挡目标的特征提取能力;其次,设计了一种空洞卷积空间金字塔模块(atrous spatial pyramid faster,ASPF),扩大输出特征图的感受野,提高模型对水下多尺度目标的感知能力;最后,对损失函数进行改进,优化模型的训练过程并提高定位精度.将改进算法在URPC数据集上进行实验,结果表明改进算法的检测精度达到了87.3%,相较于原始算法YOLOv8提高了3.4%,同时能够精准检测水下多尺度、重叠遮挡目标.
Underwater Target Detection via Improved YOLOv8
An improved YOLOv8 algorithm for underwater target detection is proposed to prevent missed detection of objects with different scales and overlapping occlusion.Firstly,deformable convolutions are introduced into the backbone network(deformable convolution network,DCN)to improve the feature extraction capability of the model by means of the adaptive deformation mechanism of convolution kernels.Secondly,a module combining atrous convolution and spatial pyramid,termed ASPF,is designed to expand the receptive field of the output feature map and improve the perception ability of the model for detecting underwater targets of multiple scales.Finally,the loss function is improved to optimize the training process of the model and improve detection accuracy.The improved algorithm is tested on the URPC data set,and the results show that its detection accuracy reaches 87.3%,which is 3.4%higher than that of the original YOLOv8 algorithm.Moreover,it can accurately detect underwater targets with different scales and overlapping occlusion.

underwater target detectionYOLOv8deep learningdeformable convolution network(DCN)WIoU

周昕、李远禄、吴明轩、范小婷、王键翔

展开 >

南京信息工程大学 自动化学院,南京 210044

江苏省大气环境与装备技术协同创新中心,南京 210044

水下目标检测 YOLOv8 深度学习 可变形卷积 WIoU

国家自然科学基金青蓝工程

616710102191091900101

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(11)