首页|基于VE-GEP算法的PM2.5浓度预测

基于VE-GEP算法的PM2.5浓度预测

扫码查看
准确预测PM2.5 浓度对于公众健康和环境保护具有重要意义,但其非线性、多变性以及复杂性的特点导致难以准确预测.基于此,本文针对传统GEP存在的不足,提出了一种基于病毒进化的基因表达式编程算法(VE-GEP)来预测PM2.5 浓度.该算法在GEP的基础上引入了复活机制与诱变重启机制.复活机制能去除种群中的劣质个体,改善种群中个体的质量;诱变重启机制通过引入优质基因和新的个体,提高种群的多样性,增强算法的寻优能力.实验结果表明,VE-GEP算法相较于GEP、DSCE-GEP和CNN-LSTM在春季、夏季和秋季中的预测模型均有不同程度的提高,拟合度分别提高 1.28%/0.1%/0.13%、1.86%/1.29%/0.42%、0.57%/0.24%/0.29%,为PM2.5 浓度预测研究提供了新的思路和方法.
PM2.5 Concentration Prediction Based on VE-GEP Algorithm
Accurate prediction of PM2.5 concentration is essential for public health and environmental protection,but its nonlinearity,variability,and complexity make it difficult.Based on this,this study proposes a gene expression programming algorithm based on virus evolution(VE-GEP)to predict PM2.5 concentration in response to the shortcomings of traditional GEP.The algorithm introduces a resurrection mechanism and a mutagenic restart mechanism based on GEP.The resurrection mechanism removes poor-quality individuals from the population and improves individual quality in the population.The mutagenic restart mechanism increases population diversity and enhances algorithm optimization-seeking ability by introducing high-quality genes and new individuals.Experimental results show that the VE-GEP algorithm improves the prediction models to different degrees compared to GEP,DSCE-GEP,and CNN-LSTM in spring,summer,and fall,with improvements in the fitness of 1.28%/0.1%/0.13%,1.86%/1.29%/0.42%,and 0.57%/0.24%/0.29%,respectively,which provides new ideas and methods for PM2.5 concentration prediction studies.

gene expression programmingresurrection mechanismmutagenic restart mechanismvirus evolutionPM2.5 concentration prediction

王超学、邹飞

展开 >

西安建筑科技大学 信息与控制工程学院,西安 710055

基因表达式编程 复活机制 诱变重启机制 病毒进化 PM2.5浓度预测

国家自然科学基金面上项目陕西省自然科学基础研究计划面上项目

620723632019JM-167

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(11)