首页|基于改进YOLOv8n的轻量化柑橘成熟度检测

基于改进YOLOv8n的轻量化柑橘成熟度检测

扫码查看
为了实现柑橘采摘的智能化,果园环境中对柑橘快速而精准的识别成为关键.针对现有目标检测算法对环境的适应缺陷和效率低下的问题,提出一种基于YOLOv8n模型的轻量化柑橘成熟度检测算法YOLOv8n-CMD(YOLOv8n citrus maturity detection).首先,优化backbone网络结构,提高小目标检测能力;其次,添加CBAM注意力机制,改善模型分类效果;然后,引入Ghost卷积,将YOLOv8 原模型中的颈部C2f模块与Ghost结合,减少计算量和参数量;最后使用SimSPPF模块代替原网络金字塔池化层,提高模型检测效率.实验结果表明:YOLOv8n-CMD算法相较于原模型的模型参数量和计算量分别减少了 31.8%和 7.4%,精准度提高了 3.0%,更适合果园环境下的柑橘检测研究.
Lightweight Citrus Maturity Detection Based on Improved YOLOv8n
To achieve intelligent citrus picking,fast and accurate identification of citrus in the orchard environment becomes critical.Aiming at the defective adaptation of existing target detection algorithms to the environment and low efficiency,this study proposes a lightweight citrus maturity detection algorithm based on the YOLOv8n model,YOLOv8n-CMD(YOLOv8n citrus maturity detection).Firstly,the backbone network structure is optimized to improve the detection of small targets.Secondly,the CBAM attention mechanism is added to improve the classification effect of the model.Then,Ghost convolution is introduced,and the neck C2f module in the original YOLOv8 model is combined with Ghost to reduce the amount of computation and that of parameters.Finally,the SimSPPF module is used in place of the original pyramidal pooling layer to improve model detection efficiency.Experimental results show that the YOLOv8n-CMD algorithm reduces the number of parameters and computation by 31.8%and 7.4%,respectively,and improves the accuracy by 3.0%,which is more suitable for citrus detection research in the orchard environment.

citrusorchard environmenttarget detectionsmall targetCBAMGhostSimSPPF

肖阳、项明宇、李熹

展开 >

广西民族大学 电子信息学院,南宁 530006

广西民族大学 人工智能学院,南宁 530006

柑橘 果园环境 目标检测 小目标 CBAM Ghost SimSPPF

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(11)