首页|基于改进RT-DETR的水下目标检测

基于改进RT-DETR的水下目标检测

扫码查看
水下目标检测技术在海洋探测中具有重要的现实意义.针对水下场景复杂,以及存在遮挡重叠导致目标特征提取有限的问题,提出了一种适用于水下目标检测的FERT-DETR网络.该模型首先提出了一种特征提取模块Faster-EMA,用于替换RT-DETR中ResNet18 的BasicBlock,能够在有效降低模型参数量和模型深度的同时,显著提升对水下目标的特征提取能力;其次在编码部分使用级联群体注意力模块AIFI-CGA,减少多头注意力中的计算冗余,提高注意力的多样性;最后使用高水平筛选特征金字塔HS-FPN替换CCFM,实现多层次融合,提高检测的准确性和鲁棒性.实验结果表明,所提算法FERT-DETR在URPC2020 数据集和DUO数据集上比RT-DETR检测准确率提高了 3.1%和 1.7%,参数量压缩了 14.7%,计算量减少了 9.2%,能够有效改善水下复杂环境中不同尺寸目标漏检、误检的问题.
Underwater Target Detection Based on Improved RT-DETR
Underwater target detection has practical significance in ocean exploration.This study proposes a FERT-DETR network suitable for underwater target detection to address the issues of complex underwater environments and limited target feature extraction due to occlusion and overlap.The proposed model first introduces a feature extraction module,Faster EMA,to replace the BasicBlock of ResNet18 in RT-DETR,which can significantly improve its capability to extract features of underwater targets while effectively reducing the number of parameters and depth of the model.Secondly,a cascaded group attention module,AIFI-CGA,is used in the encoding part to reduce computational redundancy in multi-head attention and improve attention diversity.Finally,a feature pyramid for high-level filtering named HS-FPN is used to replace CCFM,achieving multi-level fusion and improving the accuracy and robustness of detection.The experimental results show that the proposed algorithm,FERT-DETR,improves detection accuracy by 3.1%and 1.7%compared to RT-DETR on the URPC2020 and DUO datasets respectively,compresses the number of parameters by 14.7%,and reduces computational complexity by 9.2%.It can effectively avoid missed and false detection of targets of different sizes in complex underwater environments.

computer visionRT-DETRFasterNetattention mechanismhigh-level screening-feature fusion pyramid(HS-FPN)

张路、魏本昌、魏鸿奥、周龙刚

展开 >

湖北汽车工业学院电气与信息工程学院,十堰 442002

计算机视觉 RT-DETR FasterNet 注意力机制 高水平筛选特征金字塔

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)