首页|改进YOLOv8n-Pose的形变QR码校正与识别

改进YOLOv8n-Pose的形变QR码校正与识别

扫码查看
针对QR码图像检测过程中因环境复杂性和拍摄角度变化等因素导致QR码读取率低的问题,本文提出一种基于改进YOLOv8n-Pose的形变QR码校正与识别算法.首先,在主干网络引入高效通道注意力机制(efficient channel attention,ECA)模块,该模块通过不降维的方式实现跨通道交互,有效提升网络的特征提取能力和检测精度.其次,采用Slim-neck架构重构颈部网络,减少模型的复杂度,提高对不同尺度QR码的检测能力.最后,通过模型检测到的QR码角点,结合逆透视变换对QR码进行校正,并使用ZBar算法进行读取.实验结果表明,在公开的QR码数据集上,改进的算法相比原算法,mAP50 和mAP50-95 分别提升 1.6%和 1.1%,模型参数量和模型计算量分别降低 6.5%和 9.5%,在CPU和GPU上检测速度分别提升 0.3 f/s和 0.7 f/s,达到 14.2 f/s和 59.6 f/s,能够高效地满足QR码角点检测需求.此外,在自制的形变QR码数据集上,基于改进YOLOv8n-Pose的QR码识别方法相比单独使用ZBar算法的QR码识别方法,QR码读取率提高 23.66%,达到 87.41%.该方法仅需拍摄一张照片就可识别所有货物的信息,能够有效提高货物管理的效率.
Deformed QR Code Correction and Recognition Based on Improved YOLOv8n-Pose
To address the problem of low QR code reading rates caused by complex environments and changes in shooting angles during QR code detection,this study proposes an algorithm for correcting and recognizing deformed QR codes based on an improved YOLOv8n-Pose algorithm.First,the efficient channel attention(ECA)module is introduced into the backbone network.This module achieves cross-channel interaction without dimensionality reduction,effectively enhancing the feature extraction capabilities and detection accuracy of the network.Secondly,the Slim-neck architecture is adopted to reconstruct the neck network,reducing model complexity and improving the detection capability for QR codes of different scales.Finally,detected QR code corner points are used for correction through inverse perspective transformation,and the corrected QR codes are read using the ZBar algorithm.Experimental results show that,on a public QR code dataset,the improved algorithm increases mAP50 and mAP50-95 by 1.6%and 1.1%,respectively,compared to the original algorithm.Model parameters and computational costs are reduced by 6.5%and 9.5%,respectively.Detection speed on CPU and GPU is improved by 0.3 f/s and 0.7 f/s,reaching 14.2 f/s and 59.6 f/s,respectively,meeting the requirements for efficient detection of QR code corner points.In addition,on a custom-made dataset of deformed QR codes,the proposed method based on the improved YOLOv8n-Pose algorithm enhances the QR code reading rate by 23.66%compared to the standalone ZBar algorithm,achieving a recognition rate of 87.41%.This method only requires one photo to recognize all the information about the goods,which can effectively improve the efficiency of goods management.

QR codekeypoint predictionYOLOv8n-Poseattention mechanismlocation and correction

刘云、邹复民、蔡祈钦、李俊清、钟继雄

展开 >

福建理工大学电子电气与物理学院,福州 350118

福建省汽车电子与电驱动技术重点实验室,福州 350118

福建中科兰剑智能装备科技有限公司,福州 350108

QR码 关键点预测 YOLOv8n-Pose 注意力机制 定位与校正

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)