首页|基于YOLOv8和改进UNet++变电站指针式仪表读数识别

基于YOLOv8和改进UNet++变电站指针式仪表读数识别

扫码查看
针对变电站仪表背景复杂、多旋转角度图像导致读数识别准确率低的问题,提出一种基于YOLOv8 和改进UNet++的指针式仪表读数识别方法.采用YOLOv8 模型检测仪表区域,并利用透视变换进行旋转校正;采用极化自注意力模块改进的UNet++算法分割表盘图像提取刻度、指针区域;经过提取指针直线后,采用角度法计算仪表读数.实验结果表明:提出方法识别仪表读数的平均引用误差为 1.82%,具有较高的识别准确性,将其应用于变电站指针式仪表智能化巡检中具有一定的可行性.
Reading Recognition of Substation Pointer Instrument Based on YOLOv8 and Improved UNet++
This study proposes a method for pointer instrument reading recognition based on YOLOv8 and an improved UNet++to solve the problem of low reading recognition accuracy caused by complex backgrounds and multiple rotational angles in images of substation meters.YOLOv8 is utilized to detect the instrument area,and perspective transformation is used for rotation correction.The improved UNet++,enhanced by a polarized self-attention module,is utilized to segment dial images to extract scales and pointer regions.After the pointer line is extracted,the instrument reading is computed using the angle method.Experimental results indicate that the proposed method achieves an average citation error of 1.82%in identifying instrument readings.The method has superior recognition accuracy and is feasible for application in the intelligent inspection of pointer instruments in substations.

instrument reading recognitionYOLOv8UNet++polarized attentionimage segmentation

李春蕾、阮艺铭、张小明、王宏淼、王明杰

展开 >

许昌市分布式能源教学平台重点实验室,许昌 461000

许昌职业技术学院机电与汽车工程学院,许昌 461000

郑州大学电气与信息工程学院,郑州 450001

许继集团有限公司,许昌 461000

展开 >

仪表读数识别 YOLOv8 UNet++ 极化注意力 图像分割

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)