首页|基于标签噪声对比学习的肺癌淋巴结转移鉴别

基于标签噪声对比学习的肺癌淋巴结转移鉴别

扫码查看
基于深度学习的人工智能诊断模型严重依赖于高质量地详尽注释数据进行算法训练,但受到标签噪声信息的影响.为了增强模型的鲁棒性并防止有噪声的标签记忆,提出了一种标签噪声样本选择(noise label sample selection,NLSS)模型来充分挖掘噪声样本的隐藏信息,减轻模型过拟合问题.首先,通过将混合增强图像作为输入,提取图像分布式特征表示;其次,引入对比损失函数以及比较样本预测标签分布与其真实标签分布的相似性来评估样本,进行样本选择;最后,通过标签重分配模块的伪标签提升策略在样本选择的基础上重新纠正噪声标签的监督信息.以非小细胞肺癌(non-small cell lung cancer,NSCLC)患者的PET/CT数据集为例进行实验,结果表明提出的模型均比对比模型有一定的提升,可降低淋巴结转移状态诊断中标签噪声的干扰.
Identification of Lung Cancer Lymph Node Metastasis Based on Label Noise Contrastive Learning
The AI diagnostic model based on deep learning relies heavily on high-quality detailed annotated data for algorithm training,but is affected by label noise information.To enhance the robustness of the model and prevent noisy label memory,a noise label sample selection(NLSS)model is proposed to fully mine the hidden information of noise samples and alleviate model overfitting.Firstly,distributed feature representations of the image are extracted by taking hybrid enhanced images as input.Secondly,the contrasive loss function is introduced to compare the similarity between the predicted label distribution of the sample and the real label distribution for sample evaluation and selection.Finally,based on sample selection,supervised information of the noisy label is re-corrected by the pseudo-label promotion strategy of the label redistribution module.Taking the PET/CT dataset of non-small cell lung cancer(NSCLC)patients as an example,results show that the proposed models outperform comparison models,reducing the interference of label noise in the diagnosis of lymph node metastasis.

deep learninglabel noisesample selectioncontrastive learning

祁婧、李子荣、刘秀婷、马露、陈俊豪

展开 >

兰州财经大学信息工程与人工智能学院,兰州 730020

深度学习 标签噪声 样本选择 对比学习

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)