首页|基于改进TD3算法的无人机轨迹规划

基于改进TD3算法的无人机轨迹规划

扫码查看
深度强化学习算法在无人机的航迹规划任务中的应用越来越广泛,但是许多研究没有考虑随机变化的复杂场景,针对以上问题,本文提出一种基于TD3 改进的PP-CMNTD3 算法,提出了一种简单有效的先验策略并且借鉴人工势场的思想设计了密集奖励,能够更好地引导无人机有效避开障碍物并且快速接近目标点.仿真结果表明,算法的改进可以有效提高网络的训练效率以及在复杂场景中的航迹规划表现,同时能够在不同初始电量的情况下都能够灵活调整策略,做到在能耗和迅速抵达目的地之间的有效平衡.
UAV Trajectory Planning Based on Improved TD3 Algorithm
Deep reinforcement learning algorithms are more and more widely used in UAV trajectory planning tasks,but many studies do not consider complex scenarios of random changes.To address the above problems,this study proposes an improved PP-CMNTD3 algorithm based on TD3,which puts forward a simple and effective prior strategy and draws on the idea of artificial potential fields to design dense rewards.UAVs are better guided to effectively avoid obstacles and swiftly approach target points.Simulation results show that the algorithm improvement can effectively improve the training efficiency of the network and the trajectory planning performance in complex scenarios.At the same time,the strategy can be flexibly adjusted under different initial power levels,achieving an effective balance between energy consumption and rapid arrival at the destination.

deep reinforcement learningunmanned aerial vehicle(UAV)trajectory planningartificial potential fieldtwin delayed deep deterministic policy gradient(TD3)algorithm

牟文心、时宏伟

展开 >

四川大学计算机学院,成都 610065

深度强化学习 无人机 航迹规划 人工势场 双延迟深度确定性策略梯度算法

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)