首页|E2E-DRNet:基于EfficientNetV2模型的糖尿病视网膜病变识别

E2E-DRNet:基于EfficientNetV2模型的糖尿病视网膜病变识别

扫码查看
本文提出一种名为E2E-DRNet的模型,旨在解决当前人工糖尿病视网膜病变(diabetic retinopathy,DR)诊断中分类性能差、耗时费力以及视网膜图像等级差异小、病灶不明显等问题.该模型基于EfficientNetV2,并结合了有效通道注意力模块.通过对DR数据集进行处理和优化,引入了Focal Loss损失函数以解决样本不均衡问题,并将模型分为两个阶段以实现DR分类的细分.实验结果表明,该方法在公开数据集和临床数据集上表现良好,提高了对眼底病变区域的可解释性,有助于提高DR病变的筛查效率,克服了人工诊断的局限性.
E2E-DRNet:Diabetic Retinopathy Recognition with EfficientNetV2 Model
This study proposes a model called E2E-DRNet to address issues in manual diabetic retinopathy(DR)diagnosis,including poor classification performance,laborious processes,minimal differences in grades of retinal images,and inconspicuous lesions.This model is based on EfficientNetV2 and incorporates the efficient channel attention(ECA)module.By processing and optimizing a DR dataset,the Focal Loss function is introduced to address sample imbalance.The model achieves refined DR classification through two stages.Experimental results demonstrate that the proposed model performs well on both public and clinical datasets.Additionally,it enhances the interpretability of lesion regions in fundus images,thereby improving the efficiency of DR lesion screening and overcoming the limitations of manual diagnosis.

diabetic retinopathy(DR)EfficientNetV2efficient channel attentioninterpretability

刘圆圆、陈麓、鲁峰、叶阳、安禹潼、金明慧、邢开原、曾光

展开 >

哈尔滨医科大学(大庆)医学信息学系,大庆 163319

大庆市油田总医院眼科,大庆 163319

糖尿病视网膜病变 EfficientNetV2 有效通道注意力 可解释性

2024

计算机系统应用
中国科学院软件研究所

计算机系统应用

CSTPCD
影响因子:0.449
ISSN:1003-3254
年,卷(期):2024.33(12)