首页|基于聚类的文本分类算法框架研究

基于聚类的文本分类算法框架研究

扫码查看
KNN算法因其易于理解、理论成熟等优点而被广泛应用于文本分类.由于KNN需遍历样本空间计算距离,当训练集样本规模较大或维数较高时,计算开销是巨大的.针对此问题,首先将遗传算法适应度函数设计部分与K-medoids算法思想相融合形成K-GA-medoids,其次将其与KNN相结合形成用于文本分类的算法框架,在分类过程中,采取先聚类,再分类的步骤,以实现对训练集样本的缩减,从而降低计算开销.实验表明,K-GA-medoids相较于传统K-medoids而言在聚类效果上有较为明显的提升,且将其与KNN相结合形成的文本分类算法框架与传统KNN算法相比在保证分类精确率的前提下,有效提升了文本分类的效率.
Research on the Framework of Text Classification Algorithms Based on Clustering

黄细凤

展开 >

中国电子科技集团公司第十研究所 成都 610036

KNN K-medoids 文本分类 聚类分析 遗传算法

中国电子科技集团公司第十研究所项目

2018-557-05-01

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(1)
  • 16