首页|基于DTW和改进匈牙利算法的句子语义相似度研究

基于DTW和改进匈牙利算法的句子语义相似度研究

扫码查看
句子语义相似度的研究在自然语言处理等领域发挥着重要的作用.针对现有汉语句子相似度研究中存在的语义特征难以分析以及语序影响的问题,提出了一种基于DTW和匈牙利算法相结合的语义句子相似度处理模型.模型首先使用Word2vec深度学习模型训练百度新闻语料,得到200维的包含语义特征的词向量词典,并建立词向量空间,根据词向量组成的多维空间曲线,通过计算句子曲线之间相互转换的距离和复杂度来表示句子语义相似度,模型采用了DTW矩阵和改进的匈牙利算法,并对DTW矩阵做最短路径规划.实验结果表明,与现有的夹角余弦相似度等句子相似度计算方法相比,该方法在语序较乱但语义相近的情况下也能得到较为准确的相似度结果值.
Research on Sentence Semantic Similarity Based on DTW and Improved Hungarian Algorithm

钮焱、李星、李军、刘宇强、Jepkemei Judith

展开 >

湖北工业大学 武汉 430068

词向量 DTW 匈牙利算法 语义相似度 语义特征

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(2)
  • 12