首页|基于深度学习的声学模型研究

基于深度学习的声学模型研究

扫码查看
近年来,深度学习凭借其优越的性能广泛应用于图像处理、自然语言处理、语音识别等领域,它对性能的提升远超于以往的传统方法.论文采取循环神经网络(Recurrent Neural Networks,RNN)中的长短期记忆模型(Long Short Time Memory,LSTM)实现了语音识别中的声学模型构建,并增加反向时序信息对训练的影响,构成了双向长短期记忆模型(Bi-directional Long Short Time Memory,BLSTM).语音信号是一种复杂的时变信号,而BLSTM能够在处理时间序列数据的同时,选择性地记住有效信息,丢弃无用信息,实验表明该方法的识别率较传统的高斯混合模型-隐马尔可夫模型(Gaussian Mixture Model-Hidden Markov Model,GMM-HMM)有显著的提高.
Research on Acoustic Model Based on Deep Learning

沈东风、张二华

展开 >

南京理工大学计算机科学与工程学院 南京 210094

语音识别 声学模型 深度学习 BLSTM

军委装备发展部十三五装备预研领域基金

61403120102

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(2)
  • 2
  • 9