首页|基于粒子群算法优化设计RBM网络结构

基于粒子群算法优化设计RBM网络结构

扫码查看
受限玻尔兹曼机在实际使用中不可避免地遇到设置网络结构的问题,然而对于这一问题并没有有效的方法,因此提出基于粒子群算法优化设计RBM网络结构方法(Particle Swarm Optimization-Restricted Boltzmann Machine,PSO-RBM).该方法克服了粒子群算法在处理标称型数据时的局限性,采用连续型变量构造个体进行迭代训练,在求解适应度时再转变成标称型变量,做到可见层特征和隐藏层数目的优化选择.在MNIST数据集上实验,结果表明粒子群算法优化后的RBM网络结构在错误率和训练时间上与传统的RBM网络结构相比较,该方法在综合性能上有一定的优势,实现了粒子群算法优化设计RBM网络结构的目的.
Optimal Design of RBM Network Structure Based on Particle Swarm Optimization

闻一波、雷菊阳

展开 >

上海工程技术大学机械与汽车工程学院 松江 201620

粒子群算法 受限玻尔兹曼机 特征

2021

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2021.49(4)
  • 1
  • 6